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Abstract
In this paper we study the normal forms of polynomial systems having a set of
given generic invariant algebraic curves.

PACS numbers: 02.30.1k, 02.10.De

1. Introduction and statement of the main results

Nonlinear ordinary differential equations appear in many branches of applied mathematics
and physics. In this paper we only consider autonomous differential systems. For a two-
dimensional system the existence of a first integral completely determines its phase portrait.
Of course, the easiest planar integrable systems are the Hamiltonian ones. The planar integrable
systems which are not Hamiltonian can be in general very difficult to detect. Many different
methods have been used for studying the existence of first integrals for non-Hamiltonian
systems based on: Noether symmetries [5], the Darboux theory of integrability [14], the Lie
symmetries [7, 23], the Painlevé analysis [2], the use of Lax pairs [19], the direct method
[16, 17], the linear compatibility analysis method [27], the Carlemann embedding procedure
[1, 6], the quasimonomial formalism [3], etc.

The algebraic theory of integrability is a classical one, which is related to the first part of
the Hilbert’s 16th problem. This kind of integrability is usually called Darboux integrability,
and it provides a link between the integrability of polynomial systems and the number of
invariant algebraic curves they have (see Darboux [14] and Poincaré [24]).

Jouanolou [18] extended the planar Darboux theory of integrability to polynomial systems
in R" or C", for extension to other fields see [28]. In [4, 9, 10, 20], the authors developed
the Darboux theory of integrability essentially in R? or C2 considering not only the invariant
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algebraic curves but also the exponential factors, the independent singular points and the
multiplicity of the invariant algebraic curves.

Prelle and Singer [25], using methods of differential algebra, showed that if a polynomial
vector field has an elementary first integral, then it can be computed using the Darboux theory
of integrability. Singer [26] proved that if a polynomial vector field has Liouvillian first
integrals, then it has integrating factors given by Darbouxian functions. Some related results
can be found in [8].

In this paper we are mainly interested in the polynomial differential systems which have
a given set of invariant algebraic curves, independent of whether they are integrable or not.
Thus, first we study the normal forms of planar polynomial vector fields having a given set of
generic invariant algebraic curves. That is, in some sense we are interested in a kind of inverse
theory of the Darboux theory of integrability.

In this work we deal with the following planar (differentiable) polynomial system of
degree m:

x=Px,y) y=0Q(x.y) (1
where P, Q € C,[x, y], the set of complex polynomials of degree at most m in the variables
x and y, and max{deg P, deg Q} = m.

Let C(x, y) € Clx, y], the ring of complex polynomials in x and y. The algebraic curve
C(x,y)=0of C? is called an invariant algebraic curve of system (1) if

PC,+QC, =KC 2)

for some complex polynomial K (x, y), which is called the cofactor of C = 0. Here and
after, we denote by C, and C, the derivatives of C with respect to x and y, respectively. For
simplicity, in what follows we will talk about the curve C = 0, only saying the curve C.

We mention that the cofactor of the invariant algebraic curve for system (1) has degree at
mostm — 1. Let C = ]_[ﬁzl C!" be the irreducible decomposition of C. Then C is an invariant
algebraic curve with a cofactor K of system (1) if and only if C; is an invariant algebraic
curve with a cofactor K; of system (1). Moreover, we have K = Zﬁ:l n;K;. For a proof
see [13].

Let F(x,y) = exp(G(x,y)/H(x,y)) with G, H € Clx, y] coprime (or equivalently,
(G, H) = 1). We say that F is an exponential factor if

PF, +QF, =LF 3)

for some polynomial L € C,,_[x, y], which is called a cofactor of F.

Let U be an open subset of C2. A complex function H : U — C is a first integral
of system (1), if it is constant on all solution curves (x(z), y(t)) of system (1), i.e.,
H(x(t), y(t)) = constant for all values of ¢ for which the solution (x(¢), y(¢)) is defined
on U. If the first integral H is differentiable, then PH, + QH, = 0in U.

If there exists a smooth function R(x, y) such that (PR), + (QR), = 0, then R is called
an integrating factor of system (1).

If system (1) has a first integral or an integrating factor of the form

CH...Cy FM .. Fl1 )

where C; and F; are the invariant algebraic curve and exponential factor of system (1)
respectively and A;, u; € C, then system (1) is called Darboux integrable. This kind of
function is called a Darbouxian function.

Our first result is the following theorem.

Theorem 1. Let C; = 0 fori = 1, ..., p, be irreducible invariant algebraic curves in (CZ,
and setr =Y " deg C;. We assume that all C; satisfy the following generic conditions:
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(i) There are no points at which C; and its first derivatives all vanish.
(ii) The highest order terms of C; have no repeated factors.
(iii) If two curves intersect at a point in the finite plane, they are transversal at this point.
(iv) There are no more than two curves C; = 0 meeting at any point in the finite plane.
(v) There are no two curves having a common factor in the highest order terms.

Then any polynomial vector field X of degree m tangent to all C; = 0 satisfies one of the
following statements.

(a) If r < m + 1 then

P P P

X=<]‘[C,->Y+ n|T]¢i | Xe 5)

i=1 i=1 j=1

J#
where X ¢, = (—=C,y, Ciy) is a Hamiltonian vector field, the h; are polynomials of degree
no more than m — r + 1, and the Y is a polynomial vector field of degree no more than

m—r.
(b) If r = m + 1 then

14

p
X = E o
i=l Jj

o | xc ©)
=1
J#
with o; € C.
(c) Ifr > m+1then X = 0.

This theorem, attributed to Christopher [10], was stated in several papers without proof
such as [10, 12], and used in other papers [4, 21]. The proof that we present here of theorem
1 circulated as the preprint [11] but was never published. Zholadek in [29] (see also theorem
3 of [30]) stated a similar result to our theorem 1, but as far as we know the paper [29] has
not been published. In any case Zholadek’s approach to theorem 1 is analytical, while our
approach is completely algebraic.

Statement (b) of this theorem has a corollary proposed by Christopher and Kooij [12]
showing that system (6) has the integrating factor R = ( -
system is Darboux integrable.

The following result shows that the generic conditions of theorem 1 are necessary.

C,-)_l, and consequently the

Theorem 2. If one of the conditions (i)—(v) of theorem 1 is not satisfied, then the statements
of theorem 1 do not hold.

We have mentioned that system (1) satisfying the five assumptions of theorem 1 with
r = m + 1 are Darboux integrable. Now we provide two examples of polynomial systems
satisfying all assumptions of theorem 1 with » = m + 1 except either (ii) or (iii) and which are
not Darboux integrable. Until now there are very few proofs of polynomial systems which are
not Darboux integrable, see for instance Jouanolou [18] and Maciejewski et al [22].
Consider the following quadratic systems:

x':y(ax—by+b)+x2+y2—1

§=bx(y D +a(?— 1) @
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which have the invariant circle C; = x% + y2 — 1 = 0 with cofactor K; = 2(x + ay) and the
invariant straight line C, = y — 1 = 0 with cofactor K, = bx + ay + a. We note that C; and
C, are tangent at the point (0, 1).

Theorem 3. There are values of the parameters a and b for which system (7) is not Darboux
integrable.

As a corollary the following result shows that there are polynomial systems with an
invariant algebraic curve whose highest order term has repeated factors such that they are not
Darboux integrable. Consider the following quadratic system:

Xx=(1—-b)x*+2y—1)—(ax —b)(y — 1) = P(x, y)
y=—(bx+2ay—a)y—1) = 0(x,y)
which has the invariant algebraic curves C; = x> +2y — 1 = 0 with cofactor K; =

2[(1 — b)x —ay+a] and C, = y — 1 = 0 with cofactor K, = —(bx + 2ay — a). We
note that the highest order term of C; has a repeated factor x.

()

Corollary 4. There exist values of the parameters a and b for which system (8) is not Darboux
integrable.

The paper is organized as follows. In sections 2 and 3 we prove theorems 1 and 2,
respectively. The proofs of theorem 3 and corollary 4 are given in sections 4 and 5, respectively.

2. Proof of theorem 1.

In the proof of this theorem we will use intensively Hilbert’s nullstellensatz (see, for instance,
[15]):

Set A, B; € Clx, y]fori = 1,...,r. If A vanishes in C? whenever the polynomials B;
vanish simultaneously, then there exist polynomials M; € Clx, y] and a non-negative integer
n such that A" = Z;zl M; B;. In particular, if all B; have no common zero, then there exist
polynomials M; such thaty_._, M; B; = 1.

In what follows if we have a polynomial A we will denotes its degree by a. If we do not
say anything we denote by C¢ the homogeneous part of degree ¢ for the polynomial C. We
shall need the following result.

Lemma 5. If C has no repeated factors, then (Cy, Cy) = 1.

Proof. Suppose that (C,, Cy) # 1. Then there exists a polynomial A nonconstant such
that A|C, and A|C,. Here A|C; means that the polynomial A divides the polynomial C,.
Therefore, A*|(C¢), and A?|(C¢),. By the Euler theorem for homogeneous polynomials we
have that x (C),+y(C), = cC*. So A?|C¢. Since A%, (C°)y, (C°), and C are homogeneous
polynomials of C[x, y] and A“ divides (C€),, (C¢), and C¢, the linear factors of A“ having
multiplicity m, must be linear factors of C¢ having multiplicity m + 1. This last statement
follows easily identifying the linear factors of the homogeneous polynomial C¢(x, y) in two
variables with the roots of the polynomial C¢(1, z) in the variable z. Hence, A is a repeated
factor of C°. It is in contradiction with the assumption. U

We first consider the case that system (1) has a given invariant algebraic curve.

Lemma 6. Assume that polynomial system (1) of degree m has an invariant algebraic curve
C = 0 of degree c, and that C satisfies condition (i) of theorem 1.
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(a) If (Cy, Cy) = 1, then system (1) has the following normal form:
x=AC—-DC, y=BC+ DC, )

where A, B and D are suitable polynomials.

(b) If C satisfies condition (ii) of theorem I, then system (1) has the normal form (9) with
a,b<m—candd < m — c+ 1. Moreover, if the highest order term C¢ of C does not
have the factors x and y, thena < p —c,b < g —candd < min{p,q} —c+ 1.

Proof. (a) Since there are no points at which C, C, and C, vanish simultaneously, from
Hilbert’s nullstellensatz we obtain that there exist polynomials E, F and G such that

EC,+FC,+GC = 1. (10)
As C satisfies equation (2), we get from (2) and (10) that

K = (KE + GP)C, + (KF + GQ)C,.
Substituting K into (2), we get

[P — (KE+GP)CIC, = —[Q — (KF + GQ)C]C,.
Since (Cy, Cy) = 1, there exists a polynomial D such that

P —(KE+GP)C = —-DC, Q0 — (KF+GQ)C = DC,.

This proves that system (1) has the form (9) with A = KE + GP and Q = KF + GQ.

(b) From (a) and lemma 5 we get that system (1) has the normal form (9). Without loss
of generality we can assume that p < q.

We first consider the case that C¢ has neither factor x nor y. So we have (C¢, (C),) =1
and (C°, (C°),) = 1, where (C*) denotes the derivative of C* with respect to x. In (9) we
assume thata > p — ¢, otherwise the statement follows. Then d = a + 1. Moreover, from the
highest order terms of (9) we get

Aacc‘ — Da+1c;71

where Cfv'*l denotes the homogeneous part with degree ¢ — 1 of C,. Since (CC, C;'*l) =1,
there exists a polynomial F' such that

A =FCy! D' = FC*.
In (9) we replace A by A — FC, and D by D — FC, so the degrees of polynomials under

consideration reduce by one. We continue this process and do the same for y until we reach a
system of the form

£ =AC—DC, y = BC + EC, (11)

witha < p—c,d<p—c+1,b<qg—cande < g—c+ 1. Since C = 0 is an invariant
algebraic curve of (11), from (2) we get

C(AC, +BCy) + C,Cy(E — D) = KC.

This implies that there exists a polynomial R such that E — D = RC, because C with C, and
C, are coprime.
Ife > d,thenr = e —c. We write BC+ EC, = (B+RC,)C +DC, and denote B + RC,
again by B, then system (11) has the form (9) where A, B and D have the required degrees.
Ife < d,thenr =d —c. We write AC — DCy = (A+RC,)C — EC, and denote A +RC,
again by A, then system (11) has the form (9) where A, B and E instead of D have the required
degrees. This proves the second part of (b).



2462 C Christopher et al

Now we prove the first part of (b). We note that even though C¢ has no repeated factor,
C¢ with C{™" or C§~! may have a common factor in x or y (for example, C* = x(x* + y?),
C3 = y(x?+y?) or C* = xy(x? + y?)). In order to avoid this difficulty we rotate system (1)
slightly such that C¢ has no factors in x and y. Then, applying the above method to the new
system we get that the new system has a normal form (9) with the degrees of A, B and D as
those of the second part of (b).

We claim that under affine changes system (9) preserves its form and the upper bound of
the polynomials, i.e. a,b < m —c andd < m — c + 1. Indeed, using the affine change of
variablesu = ajx+b;y+c; and v = a,x +byy +c; with a1b, — ab; # 0, system (9) becomes

= (a1A+bB)C — (a1b, — axb)DC, UV = (a2A +b,B)C + (aiby — a,b1)DC,,.

Hence, the claim follows. This completes the proof of (b), and consequently we have the
proof of the lemma. U

Lemma 7. Assume that C = 0 and D = 0 are different irreducible invariant algebraic curves
of system (1) of degree m, and that they satisfy conditions (i) and (iii) of theorem 1.

(a) If (Cy, Cy) = 1 and (Dy, Dy) = 1, then system (1) has the normal form
X =ACD — ECy,D — FCD, vy =BCD + EC,D + FCD, (12)

(b) If C and D satisfy conditions (ii) and (v), then system (1) has the normal form (12) with
ab<m—-c—dande, f <m—c—d+1.

Proof. Since (C, D) = 1, the curves C and D have finitely many intersection points. By
assumption (i) at each of such points there is at least one nonzero first derivative of both C and
D. In a similar way to the proof of the claim inside the proof of lemma 6, we can prove that
under an affine change of the variables, system (12) preserves its form and the bound for the
degrees of A, B, E and F. So, we rotate system (1) slightly such that all first derivatives of C
and D are not equal to zero at the intersection points.

From Hilbert’s nullstellensatz, there exist polynomials M;, N; and R;, i = 1, 2 such that

M C+NiD+R Dy, =1 M>,C + NoD + R,Cy = 1. (13)
By lemma 6 we get that
P=AC-EC,=GD-FD, (14)

for some polynomials A, E|, G| and F;. Moreover, using the first equation of (13) we have
Fi = SC+TD+ UC, for some polynomials S, T"and U. Substituting F; into (14) we obtain
that

(A1 +SD,)C + (=G, +TD,)D + (—E, + UD,)C, = 0. (15)

Using the second equation of (13) and (15) to eliminate C, we get

—E+UD, =VC+ WD (16)
for some polynomials V and W. Substituting (16) into (15), we have

(A1 +SD,+VC,)C = (G, —TD, — WCy)D.
Since (C, D) = 1, there exists a polynomial K such that

Ay +SD,+VC, =KD G, —TD, — WC, = KC. 17
Substituting £ of (16) and A; of (17) into (14), then we have

P =KCD — SCD, +WC,D — UC,D,. (18)
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Similarly, we can prove that there exist some polynomials K’, S’, W' and U’ such that
0 =K'CD+SCD, —WC,D+U'C,D,. (19)

Since C is an invariant algebraic curve of (1), we have PC, + QC, = K¢C for some
polynomial K¢. Using (18) and (19) we get

KcC = CID(KCy + K'Cy) — SC, Dy + S'Cy D]+ C.C,[D(W — W') — UD, + U'D,].

As C, C, and C, are coprime, there exists a polynomial Z such that

DWW —-W')—-UD,+U'D, =ZC. (20)
Substituting the expression DW — UD, into (18), we get
P =KCD —SCDy+W'CyD —U'CyD, +ZCCy. 2n

Since D = 0 is an invariant algebraic curve of system (1), we have PD, + OD, = KpD
for some polynomial K. Using (19) and (21) we get
KpD = D[C(KD, + K'D,) + W (C,D, — C.D,)] + D;[CD,(—S + §')
+U'(CyDy — C,Dy) + ZCCy].
As D and D, are coprime, there exists a polynomial M such that
CD,(-S+S8)+U'(CyD, — CyDy) +ZCCy = MD. (22)
The curves C and D being transversal implies that C, D and C, D, — C, D, have no common
zeros. From Hilbert’s nullstellensatz, there exist some polynomials M3, N3 and R3 such that
M3C + N3D + R3(CyD, — C,D,) = 1. (23)
Eliminating the term C, D, — C, D, from (22) and (23), we obtain that U" = IC + JD for some
polynomials / and J. Hence, equation (22) becomes
C[I(CyDy — CyDy)+ D,(—=S+S)+ ZCy]+ D[J(C:Dy — CyD,) — M] = 0.
Since (C, D) = 1, there exists a polynomial G such that
M=J(C:D,—C,D,)+GC
I(CyDy, — CyDy) + Dy(—S +S") + ZCy, = GD.
Substituting ZC, — SD,, and U’ into (21) we obtain that
P=(K+G)CD— (IC,+S§)CDy + (W' —JD,)DC,.

This means that P can be expressed in the form (18) with U = 0.

Working in a similar way, we can express Q in the form (19) with U’ = 0. Thus, (20)
is reduced to D(W — W’) = ZC. Hence, we have W = W’ + HC for some polynomial H.
Consequently, Z = HD. Therefore, from (22) we obtain that CD,(—S+S') = D(M —HCC,).
Since (C, D) = l and (D, Dy) = 1, we have S = S’ +LD for some polynomial L. Substituting
W and § into (18) we obtain that P and Q have the form (12). This proves statement (a).

As in the proof of lemma 6 we can prove that under suitable affine change of variables
the form of system (12) and the bound of the degrees of the polynomials A, B, E and F are
invariant. So, without loss of generality we can assume that the highest order terms of C and
D are neither divisible by x nor y.

By the assumptions, the conditions of statement (a) hold, so we get that system (1) has
the form (12). If the bounds of the degrees of A, B, E and F are not satisfied, we have by (12)
that

AC D! —E‘CyT'D — F/CcD{ =0

: 24
B*C°D! + E°CST'DY + F/ce D! = 0. 4
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We remark that if one of the numbersa +c+d,e+c —1+d and f +c+d — 11is less than
the other two, then its corresponding term in the first equation of (24) is equal to zero. The
same remark is applied to the second equation of (24). From the hypotheses it follows that
C¢ and C)“,‘1 are coprime, and also D¢ and Dg‘l, and C¢ and D?, respectively. Hence, from
these last two equations we obtain that there exist polynomials K and L such that £¢ = KC¢,
F/ = LD? and
A =KC +LDY! B’ = —kC¢™' — LD,
We rewrite equation (12) as
x=(A-KC,—-LD,)CD - (E -KC)C,D — (F —LD)CD,
y=(B+KC,+LD,)CD+(E —KC)C,D + (F — LD)CD,.
Thus, we reduce the degrees of A, B, E and F in (12) by one. We can continue this process
until the bounds are reached. This completes the proof of statement (b). g

Lemma 8. Let C; =0 fori =1, ..., p be different irreducible invariant algebraic curves of
system (1) with deg C; = c;. Assume that C; satisfy conditions (i), (iii) and (iv) of theorem 1.
Then

(a) If (Cix, Ciy) = 1fori =1,..., p, then system (1) has the normal form

p p p
= (2320 Te s (pey e
i=1 i=1

i=1 !

p
) [Ia @9

! i=1
where B, D and A; are suitable polynomials.
(b) If C; satisfy conditions (ii) and (v) of theorem 1, then system (1) has the normal form (25)

withb,d <m —Y."_cianda; <m—Y."_ c;i+1.

Proof. We use induction to prove this lemma. By lemmas 6 and 7 we assume that for any /
with 2 < < p we have
! 1

l l
P:Z(Bi—AiC(jiy)l_[Ci Q=Z<Di+Ang)1—[Ci
i=l i=l i=l i=l

where Zﬁ:l B; = B and Z§=1 D; = D. Since Cj;; = 0 is an invariant algebraic curve, from
lemma 6 we get that there exist some polynomials E, G and H such that
1

1
A;Ciy
P=3 <B,- - T’) [1¢ = ECr — GCra,y
i=1 !

l = (26)
A;Cix
0= Z (Di + C ) l_[ Ci = HC11 + GClyy 4.
i=1 i=1

Now we consider the curves

i=1

i#]

From the assumptions we obtain that there are no points at which all the curves K; = 0 and
Ci4+1 = O intersect. Otherwise, at least three of the curves C; = 0fori = 1,...,[/+ 1 intersect
at some point. Hence, there exist polynomials U and V; fori = 1, ...,/ such that

1
UCi+ Y _ViKi = 1. 27)

i=1
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Using this equality, we can rearrange (26) as

[
(E = GUC141,)Cri1 = Y _(BiC; — A;Ciy + GViCra1 )K;

i=1

) (28)

(H+GUCy1x)Cl1 = Z(Di Ci+A;Ciy — GViCiy1 ) K;.
i=1
Using (27) and (28) to eliminate C;;; we obtain that
i i
E-GUCLiy =Y LK, H+GUCpyx = Y JiK;
i=1 i=1
for some polynomials /; and J;. Substituting these last equalities into (28), we have
i

Y (BiCi — AiCiy + GViCrury — i CLK; = 0
= 29)

1

Y (DiCi + AiCix = GViCryy x — JiCLip)K; = 0.

i=1
It is easy to check that the expressions multiplying K; in the two summations of (29) are
divisible by C;. Hence, there exist polynomials L; and F; fori = 1, ...,/ such that

BiCi — AiCiy + GViCp1,y — i Cri1 = L; C;

(30)

DiCi + AiCiy — GViCp1 x — JiCy = FiC;.
So, from (29) we get that 3'_ L, = 0 and Y'_, F; = 0. This implies that (26) can be
rewritten as

l

I
P =Y ((Bi—L)C; — ACi)K; Q=) ((Ci— F)Ci+ACiy) K;. 31)
i=1 i=1
Moreover, we write (30) in the form
(Bi = Li)Ci — AiCiy = I;C141 — GViCry1,y = P;
(Di — F))Ci + AiCiy = JiCiy1 + GViCry1 . = Q.
It is easy to see that C; and Cy4; are invariant algebraic curves of the system x = P;, y =
Q;. So, from statement (a) of lemma 7 we can obtain that
Pi = (B; — Lj)C; — A;Ciy = X;CiCryy — Y;Ci;yCiyy — N;CiCpyy
Qi=D; — F)Ci +AiCiy = Z;CiCry1 + YiCix Cpyy + N; C; Ciyp x.

Substituting these last two equations into (31), we obtain that system (1) has the form (25)
with the / + 1 invariant algebraic curves Cy, ..., Cj4;. From induction we have finished the
proof of statement (a).

The proof of statement (b) is almost identical with those of lemma 7(b), so we shall omit
it here. Hence, this ends the proof of the lemma. O

(32)

Proof of theorem. From lemma 8 it follows statement (a) of theorem 1.

By checking the degrees of polynomials A;, B and D in statement (b) of lemma 8 we
obtain statement (b) of theorem 1.

From statement (a) of lemma 8, we can rearrange system (1) such that it has the form
(25). But from statement (b) of lemma 8 we must have B = 0, D = 0 and A; = 0. This
proves statement (c¢) of theorem 1. ]
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3. Proof of theorem 2.

The proof is formed by the following examples. First, we consider the case r < m + 1. That
is, the sum of degrees of the given invariant algebraic curves is less than the degree of the
system plus one.

Example 1. The algebraic curve C = y3 + x* — x> = 0 satisfies all conditions of theorem 1
excepting (i). The cubic system

- 3 2, .3 .4 2 2 3

X =2x—2x"—3xy"+y y=3y+x" —3x7y—3y (33)

has C as an invariant algebraic curve. We claim that system (33) does not have the form (5).
Otherwise, it can be written in the form

X =AG +x° —x) + D(=3y?)

y =By +x° —x%) + D3x* — 2x)

where A, B and D are polynomials. It is in contradiction with (33), because in the first equation
of (33) there is a linear term.

Example 2. The algebraic curve C = y — x? = 0 satisfies all conditions of theorem 1
excepting (ii). The polynomial system of degree m with m > 2:

X =Dy)+xE@Qy)+A(x, y)(y — x?) y=2xD(y) +2yE(y)+ B(x,y)(y —x?) (34)

has C as an invariant algebraic curve, where deg D, deg E = m—1,anddeg A, deg B < m—2.
We can write system (34) in the form (5), i.e.

X =AM, ) —x)+ DY) +xE(y)

¥ =(B(x,y) +2E(y)(y — x*) +2x(D(y) + xE(y)).
But then deg(B(x, y) +2E(y)) =m — 1 > m — degC.

Example 3. The algebraic curves C; = x> +y> — 1 =0and C; = y — 1 = 0 satisfy all
conditions of theorem 1 excepting (iii). The cubic system

i=—l—y+x?+xy+y’+xly+y’ =P y=G+x2+y)(y -1 =0 (35)

has C; and C; as invariant algebraic curves. We claim that system (35) cannot be written in
the form (5). Otherwise, Q can be written as

Q0 =Bx*+y*—)(y—1)+D2x(y — 1)
where B and D are polynomials. However, there do not exist polynomials B and D such that
B(x*+y?> —1)+2xD = y + x* + y°. (36)

Because if the equality holds, then B must contain the monomial —y. Let ay’ be the monomial
of B with the highest degree r > 1 and without the variable x. Then the left-hand side of (36)
contains the monomial ay’*2. It is in contradiction with the right-hand side of (36).

Example 4. The algebraic curves C; = x =0, C, =y = 0and C3 = x + y = 0 satisfy all
conditions of theorem 1 excepting (iv). The cubic system

x'=(1+x+y+x2+xy)x=P y=(1+x2+2xy+y2)y=Q (37)
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has these three curves as invariant algebraic curves. We claim that system (37) cannot be
written in the form (5). Otherwise, the polynomial Q can be written as

QO =Bxy(x+y)+Dy(x+y)+ Exy
where B, D and E are polynomials. But it is in contradiction with (37).
Example 5. The algebraic curves C; = xy + 1 = 0 and C, = y = 0 satisfy all conditions of
theorem 1 excepting (v). The cubic system
i=l+x+y—x2+x3+2xy° =P y=@+y—x*+xy—y)y=0 (38)
has C; and C, as invariant algebraic curves. If we write this system in the form (5), then
we have

Q = B(xy+ 1)y +Dy’

where B and C are polynomials. Comparing it with (38), we get that B cannot be a constant.
So,deg B > 0 = m — r, which is in contradiction with statement (a) of theorem 1.

Next, we consider the case r = m + 1. That is, the sum of the degrees of the given
invariant algebraic curves is equal to the degree of the system plus one.

Example 6. The curve C = x? + x* + y3 = 0 satisfies all conditions of theorem 1 excepting
(1). The quadratic systems with C as an invariant algebraic curve can be written as

X = %ax+%ax2—by2 y= %bx+ay+bx2+%axy
where a and b are arbitrary complex numbers. Obviously, if a # 0 this system cannot have
the form (6).
Example 7. The curve C = y — x3 = 0 satisfies all conditions of theorem 1 excepting (ii). It
is an invariant algebraic curve of the system

i=14+x—x>+xy y =3y +3x% —3xy+3y%
This system cannot be written in the form (6).
Example 8. The curves C; = x>+ y?> — 1 = 0and C, = y — 1 = 0 satisfy all conditions of

theorem 1 excepting (iii). Moreover, C; and C; are invariant algebraic curves of system (7).
However, system (7) does not have the form (6) if a # 0.

Example 9. The curves C; = x +iy = 0, C, = x —iy = 0 and C3 = x = 0 satisfy all
conditions of theorem 1 excepting (iv). The quadratic system

X = —b(x2 + y2) +x + y(ax + by) y= k(x2 + yz) +y — x(ax + by)
has C;, C; and Cj3 as invariant algebraic curves, but this system cannot take the form (6).
Example 10. The curves C; = xy — 1 = 0and C, = x = 0 satisfy all conditions of theorem 1
excepting (v). They are invariant algebraic curves of the system

X=0-2x+y)x y=1—y+xy—y%
Obviously, this system does not have the form (6).

Last we give the counterexamples for the case r > m + 1. That is, the sum of the degrees
of the invariant algebraic curves is larger than the degree of the system plus one.

Example 11. The algebraic curve C = x* + x* + y* = 0 satisfies all conditions of theorem 1
excepting (i). The quadratic systems having C as an invariant algebraic curve are
X = ax +ax? y:%ay+axy.

So, statement (c) of theorem 1 is not satisfied.
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Example 12. The algebraic curve C = y — x* = 0 satisfies all conditions of theorem 1
excepting (ii). The quadratic systems having C as an invariant algebraic curve are

% = ax +bx*+cxy y = 4ay + 4bxy + 4cy?.

They are not zero unlessa = b = ¢ = 0.

Example 13. The algebraic curves C; = x> +y> -1 =0, C, = y—1 = 0 and
Cs; = 4x + 3y + 5 = 0 satisfy all conditions of theorem 1 excepting (iii). However, the
quadratic system ¥ = y(2x — y + 1) + x>+ y> — 1,y = x(y — 1) + 2y*> — 2 has these three
curves as invariant algebraic curves.

Example 14. The algebraic curves C; = x =0, C, = y = 0and C3 = x + y = 0 satisfy
all conditions of theorem 1 excepting (iv). The linear systems having these three curves as
invariant algebraic curves are X = ax, y = ay. They are not zero unless a = 0.

Example 15. The algebraic curves C; = xy — 1, C, = y and C3 = y + 1 satisfy all conditions
of theorem 1 excepting (v). The quadratic system with C;, C, and Cj3 as invariant algebraic
curves are

X =a—bx — (a+b)xy y=>by(y+1).

They are not zero unless a = b = 0.
From these 15 examples follows the proof of theorem 2. U

4. Proof of theorem 3.

The proof is separated into three parts. The first part shows that there exists a set €2, of values
of the parameters a and b such that system (7) has only the given two invariant algebraic
curves. The second part give a proof that there exists a set 2, of values of a and b such that
systems (7) have no exponential factors. Moreover, 2; N €2, # @. The last step contributes to
prove that system (7) is not Darboux integrable for a, b € 2; N Q.

We need the following result (for a proof, see [10]).

Lemma 9. Assume that system (1) with degree m has an invariant algebraic curve C of degree
n. Let C,, P, and Q,, be the homogeneous parts of C with degree n, P and Q with degree m.
Then the irreducible factor of C,, divides y P,, — x Q.

The first part is formed by the following proposition, which is related to the existence of
invariant algebraic curves of system (7).

Proposition 10. For each b # 1 £ % with p € N there exists a numerable set Y such that if

a € R\(Y U{0}), then system (7) has no irreducible invariant algebraic curves different from
fl :Oandf2 =0.

Proof. Assume that C = )" C;(x, y) = 01is an invariant algebraic curve of system (7) with
cofactor K = K + Ky, where C; and K; are homogeneous polynomials of degree i. From the
definition of the invariant algebraic curve, i.e. (2), we have

[x* +axy+ (1 —b)y>+by — 11Y_ Cir +[bxy+ay* —bx —al Yy Ciy = (K1 +Ko) Y _ C;.

i=1 i=1 i=0
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Equating the terms with the same degree we obtain
L[C,—i] = KiC\i + KoCpjy1 — bycn7i+l,x + bxcn7i+l,y + Cn7i+2,x + acn7i+2,y
i=0,1,...,n+2 39)

where C; = 0fori < Oand i > n, and L is the partial differential operator
d 9
L = [x>+axy+ (1 —b)y’]— + [bxy +ay*]—.
ox ay

For system (7) we have yP, — xQ> = (1 — b)y(x?> + y?). So, from lemma 9 we can
assume that
C, = (x> +yHly" n=2+m.
Substituting C,, into (39) with i = 0 and doing some computations we get
Ki=Ql+mb)x +al+m)y.
Set C, 1 = Y1) ¢u1ix"~'71yl. Substituting C,_;, C, and K into (39) with i = 1

i=

and doing some calculations, we obtain

n—1 n—1
Z(m —1—i+ib—mb)c,_j_ix**m iyl — Zacn—l—ixmm_l_iym
i=0 i=0
n—1
+ 3 @I m = 1= D)1= b)eyyx 2y
i=0
— Ko(x2 + y2)lym +mbx(x2 + yZ)lym—l

1 l
l : , l . .
— E KO < . ) x21721ym+21 + E mb < ) x21+1721ym+2171.
i=0 ! i=0 !
This equation can be written as

Z[(m —1—i+ib—mb)cp_1—i —acp_i+ Ql+m+1—i)(1 = b)cpp_iJx2m=iyi
i=0

l l
— Z KO <I.)x21—2iym+2i + Zmb <l) x21+1—2iym+2i—1
i=0 ! i=0 !

where ¢; = 0fori < Oandi > n — 1. Equating the coefficients of x’y/ in the above equation,
we get

[m—i—1+G—m)blcosm—1-i — acoyem—i+ QL+m+1—i)(1 —b)copyme1—i =0 “0)
i=0,1,...,m—2
. . . l
[(2i — 1)b —2i]cy—2i —acyy1—2i — QL +2 —2i)(b — D)coyo—0; = mb (z)
(41)
i=0,1,...,1
. . l
[2i(b— 1) — leoy—2i—1 —acy—oi — 2L+ 1 —2i)(b — Dcyr1-2i = Ko <z>
(42)

i=0,1,...,1L
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From the assumptions and (40) we can prove easily that ¢y,; =0for j =1,...,m — 1.
Equations (41) and (42) can be written as

. l
Cu-% = T =F [aczl+1—2i + (2 +2 = 20)(b — 1eaaai +mb (l)}

1 l “3)
= i+ Q2I+1=20)b— 1)y + Ko | .
Co-2i—1 D=1 [aczz 2+ ( i)( )Cous1-2 0<l>:|
withi =0, 1,...,[. Itis easy to check that
Cy = —m Ccy—1 = am — K.
From (43) with i = 1 we get that
l
o = b a 2(am — Kog) —ml = By(a,b,)(am — Ky) —m <1)
@ 1= 2=V = ko) = Bota. b Iy (am — Ko)
Cy_3 = +1 — am — = By(a,b,])(am — .
T30 -2) 2 -3 oo ’
In what follows we use induction to find the coefficients c¢y_; fori =4, ..., 2/. Assume that
fori = h we have
l
ca—op = Bop—1(a, b, l)(am — Ko) —m (h) co—1-2n = Bap(a, b, ) (am — Ko)

where B;_i(a, b, 1) for j = 2h,2h + 1, are polynomials in a where coefficients are functions
of b and [ and the highest order terms of the form

J
a’' [ TG = b —il. (44)
i=2
Then from (43) withi = h + 1 we get
1
opn = B b, — K 20 —2h)(b—1
Co—2n—2 2(h+1)(b—1)—b{a n(a )(am 0) +( )( )

I l
x I:BZhl(av b, Diam — Ko) —m <h>} b (h + 1>}

[
= 32h+1(a, ba l)(am - KO) —m (h >
+1

1 l
Co—o2p-3 = St Db -1 =1 {a [Bzm(a, b,l)(am — Ko) — m(h N l):|

+Q2 = 2h —1)(b— DByy(a, b, ))(am — Ko) + K0< ! )}
h+1
= Bopsa(a, b, 1)(am — Kp).

where
1
B = B 21 —2h)(b — 1)Byy,—
2htl 2(h+1)(b—1)—b[a 2n + ( )( )Bop-1]
1 l
B = B — 20 -2h—1)(b— 1B
2h42 2(h+l)(b—l)—l[a 2hel <h+l>+( )( ) 2hi|

are polynomials in a of degree 2h + 1 and 2/ + 2 respectively, in which the highest order terms
are the form (44) for j = 2h +2 and j = 2h + 3, respectively. Hence, from (43) and using
induction we obtain that forh =0, 1, ..., 2!

-1 h+1 _ 1 1
Col—p = Bh,l(a, b, l)(am — K()) + %m <h/2> .
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Moreover, from the first equation of (43) withi =1/, i.e. aco+ (b — 1)c; + Ko = 0 we get
al[By—1(am — Ko) —m] + (b — 1) By_2(am — Ko) = Ko.

This means that
[aBy—1+ (b —1)By 2 — 1](am — Ko) = 0.

Since a3y + (b — 1)By—» — 1 is a polynomial of degree 2/ in the variable a, it has at most
2] real roots, denoted by S; the set of the roots. Then, for a € R\S; we must have Ky = am.

Obviously, T = U2, S; is a numerable set. Moreover, for eacha € R\T and/ € N we
have Ko = am. So, if C is an invariant algebraic curve of the above form, it has the cofactor
K=K +Ky=Ql+mb)x+al+m)y +am =2(x +ay)l + (bx +ay +a)m.

Moreover, we can check that C* = (x? + y2 — 1)’(y — 1) = 0 is an invariant algebraic
curve with cofactor K. If D = C — C* # 0, then D = 0 is also an invariant algebraic
curve with the cofactor K. But D has degree d < 2/ + m — 2. Again using lemma 9 we can
assume that the highest order homogeneous term of D is of the form D; = (x2 + y?)!'y"™
with d = 21’ + m’. Then, from the above proof we should have the linear part of K is
Ki = QU + m'b)x + a2l + m’)y. It is in contradiction with the last paragraph. Hence, we
must have C = C*. This proves that for b # 1 + % with p € Nand a € R\(Y U {0}) system

(7) has only the irreducible invariant algebraic curves x> + y> = 1 and y = 1. This proves the
proposition. O

Now we consider the exponential factors. We recall that if F = exp(G/H) is an
exponential factor of system (1) with cofactor L, then H = 0 is an invariant algebraic curve
of system (1) with a cofactor K, and G satisfies the following equation:

PG, +0G,=KyG+LH. (45)

For more details see [13].

Proposition 11. For each b ¢ Q there exists a numerable set Y* O Y such that if
a € R\(Y* U {0}), then system (7) has no exponential factors.

Proof. From proposition 10 system (7) has only the invariant algebraic curves C; =

x>+y> =1 =0and C; = y — 1 = 0. If system (7) has an exponential factor, we

can assume that it has the form F = exp (#) with a cofactor L, where [; and [, are
1 2

non-negative integers. Since the invariant algebraic curve Ci‘ Céz = 0 has the cofactor
K = LK)+ LKy = 2li(x +ay) + L(bx + ay + a), from (45) we get that G satisfies the
following equation:

X2 +axy+ (1 —b)y*+by — 11G, + (bxy + ay* — bx — a)G,
=[2L(x +ay) +L(bx +ay +a)]G + L(x* +y* — D' (y — D, (46)

Set degG = n. Since degL < 1, we can assume that L = L; + Ly, where L; are
homogeneous polynomials of degree i.

Case 1: n+1 < 2l +1,. By equating the homogeneous terms of highest degree in (46) we
obtain first that L; = 0, and after that Ly = 0, and so L = 0. Thus G is an invariant algebraic
curve. Moreover, from the assumption of this proposition we obtain that G = ¢C}' Cy, where
c is a constant. Then, F = constant, and it cannot be an exponential factor.

Case2: n+1 = 2l1+l,. Thenwehave L; = 0. SetG = Z?:o G;(x, y) with G; homogeneous
polynomials of degree i and G, = Y _;_, a;x"~'y', where a; are constants. Then, equating the
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terms of (46) with degree n + 1 we get that

[x2+axy+(1—b)y2]2(n—i)a, n—i=l ’+(bxy+ay)Zzax" iyi=t
i=0 i=0

= [201(x + ay) + [L(bx + ay)] Za X"y 4 Lo(x? 4 y?)y!
i=0
Using the relation n + 1 = 2I; + [, we can write this last equation as
20+l +1
DA — 1) —b) — i +aa;_y + (1 = b))l + b + 1 — i)a;_o}x> 7Ty
i=0

_LOZ< ) 20 —2i 21+lz

where a; = 0 fori < 0 andi > n. The last equation is equivalent to

[((b— 1) —b) — Na;+aai_, + (1 —=b)2L + b+ 1 —i)ai_, =0

47
i=0,1,....h—1 “7)

20 +1

D Al = 1j = aju, +aaju, 1 — (1= b)Y + 1 = j)aju, o} x™1 7Ty
j=0

_LOZ< ) 20, —2i 21+Zz (48)

Sinceb # 1+ % for k € N, from (47) we get thata; = Ofori =0, 1,...,/; — 1. From (48)
we obtain that fori = 0,1, ...,/[;

[(b—1)2i +1) — 1] azis141, + aaziy, — (1 — b)(2l1 — 2i)aziy, 1 =0

. / 49
[(b — 1)2i — azis, +aazs, 1 — (1 = bYQL + 1 — 20)ass,2 = Lo ( 1) “49)

Solving (49) fori =0, 1, ...,l; — 1 and its second equation with i = /; we get that
Aly+h =Bh(a)L0 k=0,1,...,2[1

where B;,(a) is a polynomial of degree / in a whose coefficients are rational functions in » and
I;. The highest order term of B, (a) in a is —1/ H?:o[(l — b)j + 1]. So the first equation of
(49) with i =1, is alel Ly = 0. Since the coefficient of L is a polynomial of degree m + 1,
there exist at most m + 1 values of a such that it is equal to zero. We denote by 7, the set of
such a. Hence, if a ¢ y, we must have Ly = 0. This means that L = 0. So, system (7) has
no exponential factors fora & j,.

Case 3: n =2l +1,. Let L} = Ljox + Lo, y. Using the notations for G and G, introduced in
the study of case 2, equating the terms of (46) with degree n + 1 and doing some computations
we get that

n+2

DL =D — ) + (1= b)(n+2 = Dago]x"™' !

i=0

—LIOZ<I1> 20, —2i+1 2l+12+L Z( ) 21— 21+12+1
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where a; = 0 fori < 0 andi > n. These equations are equivalent to

(i —bL)ai — (n+2—i)aj_» =0, i=0,1,....,—1

. . l
(b—D2jazju, + (1 = D)2l +2 = 2j)azj,—2 = Lo (;) (50)

. . l
b—=1DQ2j+Dazjuper + (1 —=b)2lL +1—2j)azju,—1 = Lot <JI>

where j =0, 1,...,1;.

From the first equation of (50) we obtain thata; = O fori =0, 1,...,1, — 1. Hence, the
first equation of (50) with j = 0 induces to Lo = 0. Thus, we have
20, +2 —2j .

D2yl = T g2 i=1... 0
ie. anej = (Z;)alz,j =1, ---1;. From the second equation of (50) with j =0, 1,...,[; — 1
and using induction, we can prove that

M .

az;+1+12=b—_JlL01 J=0,1,....1 —1
with v ; > 0. Now the second equation of (50) with j = /; can be written as (1 + ;) Lo = 0.
This implies that Lo; = 0. Moreover, we have a4, =0for j =0,1,...,[; — 1.

From the above calculations we get that L = L and
n
G, = Zaix”_’y’ =a, (x> + yHlyk,
i=0

Since a;, # 0, without loss of generality we assume that a;, = 1.
Equating the terms of (46) with degree n we get that

[x* + axy + (1 = D)y’ 1Gu-1.x + (bxy + ay) Gy = 201 (x + ay) + L(bx +ay)1G,-y
—byGy +bx Gy + haG, + Lo(x2 + yz)l‘ ylz.
Let G, = Y=y bix"~'~yl. Substituting G,_; into the above equation and doing some

computations, we can obtain that

Z{[l2 —1—i+b(i —bL)b —abi_1+(1 —=b)(n+1—i)bi_r}x" "y
i=0

N 0
_ h 20+1-2i | h+2i—1 h 201 =2i | Lh+2i
_bZZZ(i>x‘ y'? +(lza+L0)Z ; xR
i=0 i=0
where b; = 0 fori < Oandi > n — 1. From this equation we obtain that
(L—1—=j+b(j—D)bj—abj_1+(1 —b)(n+1—j)b;_»=0
j=0,1,.... =2

; ; . [
[—2i + b(2i — D]bsist,—1 — abaivi,—2 + (1 = b) 2Ly + 2 — 2i)baivi,—3 = bly (;) (5D

. . . l
[=2i = 1+ 2bilbaiss, = @bsisi,1 + (1= )Ly + 1 = 20)byiag, 2 = (ha + Lo) (;)

withi =0,1,...,[.
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From the first equation of (51) we can prove that b; = 0 for j =0, 1,...,l, — 2. From
(S withi =0, 1,...,/; — 1 and its first equation with i = /|, working in a similar way to
the proof of proposition 10 we can prove that

- l ~ .
bpsi—1 = Boi—1(a)Lo — I (l.l) bi,42i = Bai(a)Lg i=01,...,[4

where By (a) is a polynomial of degree k in a whose coefficients are rational functions in » and
[;. Using the last equation of (51) with i = /; we get

[aBy],l + (b — 1)5’211,2 + l] L() =0.

For every given b and /; there exist at most 2/ values of a for which alel 4+ (b — 1)1’5‘21_2 +1
is equal to zero. We denote by 7, the set of such a. Then ifa ¢ 7;,, we have Ly = 0. So for
every b satisfying the assumption of the proposition, if a & Uy, system (7) has no exponential
factors.

Case 4: n > 2l; + ;. Using the notations of case 2 for G and G, from (46) we get that

[x% +axy + (1 — b)y*1G iy + (bxy + ay?) G,y = [211(x + ay) + L (bx + ay)1G,.

Working in a similar way to the previous case we can prove that the coefficients a; in G,
satisfy the following equations:

[n—i—-2l1+b(i —)]a;+an =2l —l)a; 1+ (1 —b)(n+2—1i)a;_», =0

withi = 0,1,...,n+ 1. Since b ¢ Q, from these equations we obtain that a; = 0. So,
G, = 0. This implies that system (7) has no exponential factors.
Summing up these four cases the proof of the proposition follows. U

In this last step we prove that for each b & Q, if a € R\(Y™* U {0}) system (7) is not
Darboux integrable.

Suppose that the assumptions of proposition 11 are satisfied. Then, by propositions 10
and 11 we get that system (7) has only the invariant algebraic curves x> + y?> = 1 with
cofactor K| = 2(x + ay) and y = 1 with cofactor K, = bx +ay + a, and has no exponential
factors. It is easy to check that under these assumptions do not exist A;, A, € C not all zero
such that A Ky + 1Ky = 0 or A K + Ky = —div(P, Q) = —(2 + b)x — 3ay, where
P =y(ax —by+b)+x>+y?> —land Q = bx(y — 1) +a(y> — 1). Hence, from the Darboux
theory of integrability (see, for instance, [9] or [13]) it follows that system (7) is not Darboux
integrable. We have finished the proof of theorem 3.

5. Proof of corollary 4.

Since y = 1 is invariant by system (8), after the change of variables

- X _ y T
X = y=—" =
y—1 y—1 y—1
system (8) becomes the form of system (7), i.e.
dx _
L @i —by+b)+ R+ — 1= P(x,y)
dr
py (52)
5 =PE0 - D+a(’ = 1) = 0. ),

Let C(x, y) be a polynomial of degree n, and set C(¥,5) = (§ — )"C (%5, =%;). We

y-1°5
claim that if C(x, y) = 0 is an invariant algebraic curve of system (8) with cofactor K (x, y)
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and C = constant, then C(%, ¥) = 0 is an invariant algebraic curve of system (52) with
cofactor

R=G-DKk(— 2 2
y—153-1 y—1

Indeed, straightforward calculations show that

55 L AR o _u|PG-D-0x 0 0
Fero6 =0 1)[ G- - (y—l)ch”y—lc}
:()7—1)"|:(}‘;—I)PCX+()7—1)QC’V+I1_?1Ci|
— (G — 1) KC+n(5 — 1)"y—glc — KC.

This proves the claim.
Now we claim that if F(x, y) = exp (%) is an exponential factor of system (8) with
cofactor L(x, y), then

— 0y g
F(x’y)_exp<G(y—1’y—l)/H(y—l’ 9—1))

is an exponential factor of system (52) with cofactor L(%, ¥) = (¥ — l)L()_f%I, )%1) In fact,
we have

o G\ . L [(PG—1)— 0% 0
P x+QFy=eXp<_>H 2|:< y(y_l)ZQxGx_(y—Ql)ZGy)H

_<P(y_—l)—QxHx_ ] 0 Hy)Gi|
y-D? F—-1?2
= (G —1exp (%) H?[(PG, + 0G,)H — (PH, + QH,)G]
=@ - D(PF +QF,)
y

= (G- DLF =5 - )L (L—> F.
y—15y—1

This proves the claim.

From these two claims and the proof of theorem 3 we obtain that there exist values of a
and b for which systems (8) and (7) have only two irreducible invariant algebraic curves and
no exponential factors. Hence, for such values of @ # 0 and b system (8) is not Darboux
integrable. Otherwise, system (7) would have a Darboux integral, in contradiction with
theorem 3. Hence, the proof of corollary 4 is complete.
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