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Abstract
In this paper we study the normal forms of polynomial systems having a set of
given generic invariant algebraic curves.

PACS numbers: 02.30.Ik, 02.10.De

1. Introduction and statement of the main results

Nonlinear ordinary differential equations appear in many branches of applied mathematics
and physics. In this paper we only consider autonomous differential systems. For a two-
dimensional system the existence of a first integral completely determines its phase portrait.
Of course, the easiest planar integrable systems are the Hamiltonian ones. The planar integrable
systems which are not Hamiltonian can be in general very difficult to detect. Many different
methods have been used for studying the existence of first integrals for non-Hamiltonian
systems based on: Noether symmetries [5], the Darboux theory of integrability [14], the Lie
symmetries [7, 23], the Painlevé analysis [2], the use of Lax pairs [19], the direct method
[16, 17], the linear compatibility analysis method [27], the Carlemann embedding procedure
[1, 6], the quasimonomial formalism [3], etc.

The algebraic theory of integrability is a classical one, which is related to the first part of
the Hilbert’s 16th problem. This kind of integrability is usually called Darboux integrability,
and it provides a link between the integrability of polynomial systems and the number of
invariant algebraic curves they have (see Darboux [14] and Poincaré [24]).

Jouanolou [18] extended the planar Darboux theory of integrability to polynomial systems
in Rn or Cn, for extension to other fields see [28]. In [4, 9, 10, 20], the authors developed
the Darboux theory of integrability essentially in R2 or C2 considering not only the invariant
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algebraic curves but also the exponential factors, the independent singular points and the
multiplicity of the invariant algebraic curves.

Prelle and Singer [25], using methods of differential algebra, showed that if a polynomial
vector field has an elementary first integral, then it can be computed using the Darboux theory
of integrability. Singer [26] proved that if a polynomial vector field has Liouvillian first
integrals, then it has integrating factors given by Darbouxian functions. Some related results
can be found in [8].

In this paper we are mainly interested in the polynomial differential systems which have
a given set of invariant algebraic curves, independent of whether they are integrable or not.
Thus, first we study the normal forms of planar polynomial vector fields having a given set of
generic invariant algebraic curves. That is, in some sense we are interested in a kind of inverse
theory of the Darboux theory of integrability.

In this work we deal with the following planar (differentiable) polynomial system of
degree m:

ẋ = P(x, y) ẏ = Q(x, y) (1)

where P,Q ∈ Cm[x, y], the set of complex polynomials of degree at most m in the variables
x and y, and max{degP, degQ} = m.

Let C(x, y) ∈ C[x, y], the ring of complex polynomials in x and y. The algebraic curve
C(x, y) = 0 of C2 is called an invariant algebraic curve of system (1) if

PCx + QCy = KC (2)

for some complex polynomial K(x, y), which is called the cofactor of C = 0. Here and
after, we denote by Cx and Cy the derivatives of C with respect to x and y, respectively. For
simplicity, in what follows we will talk about the curve C = 0, only saying the curve C.

We mention that the cofactor of the invariant algebraic curve for system (1) has degree at
most m− 1. Let C = ∏l

i=1 C
ni
i be the irreducible decomposition of C. Then C is an invariant

algebraic curve with a cofactor K of system (1) if and only if Ci is an invariant algebraic
curve with a cofactor Ki of system (1). Moreover, we have K = ∑l

i=1 niKi . For a proof
see [13].

Let F(x, y) = exp(G(x, y)/H(x, y)) with G,H ∈ C[x, y] coprime (or equivalently,
(G,H) = 1). We say that F is an exponential factor if

PFx + QFy = LF (3)

for some polynomial L ∈ Cm−1[x, y], which is called a cofactor of F.
Let U be an open subset of C2. A complex function H : U → C is a first integral

of system (1), if it is constant on all solution curves (x(t), y(t)) of system (1), i.e.,
H(x(t), y(t)) ≡ constant for all values of t for which the solution (x(t), y(t)) is defined
on U. If the first integral H is differentiable, then PHx + QHy = 0 in U.

If there exists a smooth function R(x, y) such that (PR)x + (QR)y = 0, then R is called
an integrating factor of system (1).

If system (1) has a first integral or an integrating factor of the form

C
λ1
1 · · ·Cλp

p F
µ1
1 · · ·Fµq

q (4)

where Ci and Fj are the invariant algebraic curve and exponential factor of system (1)
respectively and λi, µj ∈ C, then system (1) is called Darboux integrable. This kind of
function is called a Darbouxian function.

Our first result is the following theorem.

Theorem 1. Let Ci = 0 for i = 1, . . . , p, be irreducible invariant algebraic curves in C2,
and set r = ∑p

i=1 degCi . We assume that all Ci satisfy the following generic conditions:
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(i) There are no points at which Ci and its first derivatives all vanish.
(ii) The highest order terms of Ci have no repeated factors.

(iii) If two curves intersect at a point in the finite plane, they are transversal at this point.
(iv) There are no more than two curves Ci = 0 meeting at any point in the finite plane.
(v) There are no two curves having a common factor in the highest order terms.

Then any polynomial vector field X of degree m tangent to all Ci = 0 satisfies one of the
following statements.

(a) If r < m + 1 then

X =
(

p∏
i=1

Ci

)
Y +

p∑
i=1

hi




p∏
j=1
j 	=i

Cj


XCi

(5)

where XCi
= (−Ciy, Cix) is a Hamiltonian vector field, the hi are polynomials of degree

no more than m − r + 1, and the Y is a polynomial vector field of degree no more than
m − r .

(b) If r = m + 1 then

X =
p∑
i=1

αi




p∏
j=1
j 	=i

Cj


XCi

(6)

with αi ∈ C.
(c) If r > m + 1 then X = 0.

This theorem, attributed to Christopher [10], was stated in several papers without proof
such as [10, 12], and used in other papers [4, 21]. The proof that we present here of theorem
1 circulated as the preprint [11] but was never published. Zholadek in [29] (see also theorem
3 of [30]) stated a similar result to our theorem 1, but as far as we know the paper [29] has
not been published. In any case Zholadek’s approach to theorem 1 is analytical, while our
approach is completely algebraic.

Statement (b) of this theorem has a corollary proposed by Christopher and Kooij [12]
showing that system (6) has the integrating factor R = (∏p

i=1 Ci

)−1
, and consequently the

system is Darboux integrable.
The following result shows that the generic conditions of theorem 1 are necessary.

Theorem 2. If one of the conditions (i)–(v) of theorem 1 is not satisfied, then the statements
of theorem 1 do not hold.

We have mentioned that system (1) satisfying the five assumptions of theorem 1 with
r = m + 1 are Darboux integrable. Now we provide two examples of polynomial systems
satisfying all assumptions of theorem 1 with r = m + 1 except either (ii) or (iii) and which are
not Darboux integrable. Until now there are very few proofs of polynomial systems which are
not Darboux integrable, see for instance Jouanolou [18] and Maciejewski et al [22].

Consider the following quadratic systems:

ẋ = y(ax − by + b) + x2 + y2 − 1
ẏ = bx(y − 1) + a(y2 − 1)

(7)
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which have the invariant circle C1 = x2 + y2 − 1 = 0 with cofactor K1 = 2(x + ay) and the
invariant straight line C2 = y − 1 = 0 with cofactor K2 = bx + ay + a. We note that C1 and
C2 are tangent at the point (0, 1).

Theorem 3. There are values of the parameters a and b for which system (7) is not Darboux
integrable.

As a corollary the following result shows that there are polynomial systems with an
invariant algebraic curve whose highest order term has repeated factors such that they are not
Darboux integrable. Consider the following quadratic system:

ẋ = (1 − b)(x2 + 2y − 1) − (ax − b)(y − 1) = P(x, y)

ẏ = −(bx + 2ay − a)(y − 1) = Q(x, y)
(8)

which has the invariant algebraic curves C1 = x2 + 2y − 1 = 0 with cofactor K1 =
2[(1 − b)x − ay + a] and C2 = y − 1 = 0 with cofactor K2 = −(bx + 2ay − a). We
note that the highest order term of C1 has a repeated factor x.

Corollary 4. There exist values of the parameters a and b for which system (8) is not Darboux
integrable.

The paper is organized as follows. In sections 2 and 3 we prove theorems 1 and 2,
respectively. The proofs of theorem 3 and corollary 4 are given in sections 4 and 5, respectively.

2. Proof of theorem 1.

In the proof of this theorem we will use intensively Hilbert’s nullstellensatz (see, for instance,
[15]):

Set A,Bi ∈ C[x, y] for i = 1, . . . , r . If A vanishes in C2 whenever the polynomials Bi

vanish simultaneously, then there exist polynomials Mi ∈ C[x, y] and a non-negative integer
n such that An = ∑r

i=1 MiBi . In particular, if all Bi have no common zero, then there exist
polynomials Mi such that

∑r
i=1 MiBi = 1.

In what follows if we have a polynomial A we will denotes its degree by a. If we do not
say anything we denote by Cc the homogeneous part of degree c for the polynomial C. We
shall need the following result.

Lemma 5. If Cc has no repeated factors, then (Cx, Cy) = 1.

Proof. Suppose that (Cx, Cy) 	= 1. Then there exists a polynomial A nonconstant such
that A|Cx and A|Cy . Here A|Cx means that the polynomial A divides the polynomial Cx .
Therefore, Aa|(Cc)x and Aa|(Cc)y . By the Euler theorem for homogeneous polynomials we
have that x(Cc)x +y(Cc)y = cCc. SoAa|Cc. SinceAa , (Cc)x , (Cc)y andCc are homogeneous
polynomials of C[x, y] and Aa divides (Cc)x , (Cc)y and Cc, the linear factors of Aa having
multiplicity m, must be linear factors of Cc having multiplicity m + 1. This last statement
follows easily identifying the linear factors of the homogeneous polynomial Cc(x, y) in two
variables with the roots of the polynomial Cc(1, z) in the variable z. Hence, Aa is a repeated
factor of Cc. It is in contradiction with the assumption. �

We first consider the case that system (1) has a given invariant algebraic curve.

Lemma 6. Assume that polynomial system (1) of degree m has an invariant algebraic curve
C = 0 of degree c, and that C satisfies condition (i) of theorem 1.
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(a) If (Cx, Cy) = 1, then system (1) has the following normal form:

ẋ = AC − DCy ẏ = BC + DCx (9)

where A,B and D are suitable polynomials.
(b) If C satisfies condition (ii) of theorem 1, then system (1) has the normal form (9) with

a, b � m − c and d � m − c + 1. Moreover, if the highest order term Cc of C does not
have the factors x and y, then a � p − c, b � q − c and d � min{p, q} − c + 1.

Proof. (a) Since there are no points at which C, Cx and Cy vanish simultaneously, from
Hilbert’s nullstellensatz we obtain that there exist polynomials E, F and G such that

ECx + FCy + GC = 1. (10)

As C satisfies equation (2), we get from (2) and (10) that

K = (KE + GP)Cx + (KF + GQ)Cy.

Substituting K into (2), we get

[P − (KE + GP)C]Cx = −[Q − (KF + GQ)C]Cy.

Since (Cx, Cy) = 1, there exists a polynomial D such that

P − (KE + GP)C = −DCy Q − (KF + GQ)C = DCx.

This proves that system (1) has the form (9) with A = KE + GP and Q = KF + GQ.
(b) From (a) and lemma 5 we get that system (1) has the normal form (9). Without loss

of generality we can assume that p � q .
We first consider the case that Cc has neither factor x nor y. So we have (Cc, (Cc)x) = 1

and
(
Cc, (Cc)y

) = 1, where (Cc)x denotes the derivative of Cc with respect to x. In (9) we
assume that a > p− c, otherwise the statement follows. Then d = a + 1. Moreover, from the
highest order terms of (9) we get

AaCc = Da+1Cc−1
y

where Cc−1
y denotes the homogeneous part with degree c − 1 of Cy . Since

(
Cc,Cc−1

y

) = 1,
there exists a polynomial F such that

Aa = FCc−1
y Da+1 = FCc.

In (9) we replace A by A − FCy and D by D − FC, so the degrees of polynomials under
consideration reduce by one. We continue this process and do the same for ẏ until we reach a
system of the form

ẋ = AC − DCy ẏ = BC + ECx (11)

with a � p − c, d � p − c + 1, b � q − c and e � q − c + 1. Since C = 0 is an invariant
algebraic curve of (11), from (2) we get

C(ACx + BCy) + CxCy(E − D) = KC.

This implies that there exists a polynomial R such that E − D = RC, because C with Cx and
Cy are coprime.

If e � d , then r = e − c. We write BC + ECx = (B + RCx)C + DCx and denote B + RCx

again by B, then system (11) has the form (9) where A,B and D have the required degrees.
If e < d , then r = d − c. We write AC − DCy = (A+ RCy)C − ECy and denote A+ RCy

again by A, then system (11) has the form (9) where A,B and E instead of D have the required
degrees. This proves the second part of (b).
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Now we prove the first part of (b). We note that even though Cc has no repeated factor,
Cc with Cc−1

x or Cc−1
y may have a common factor in x or y (for example, C3 = x(x2 + y2),

C3 = y(x2 + y2) or C4 = xy(x2 + y2)). In order to avoid this difficulty we rotate system (1)
slightly such that Cc has no factors in x and y. Then, applying the above method to the new
system we get that the new system has a normal form (9) with the degrees of A,B and D as
those of the second part of (b).

We claim that under affine changes system (9) preserves its form and the upper bound of
the polynomials, i.e. a, b � m − c and d � m − c + 1. Indeed, using the affine change of
variables u = a1x +b1y + c1 and v = a2x +b2y + c2 with a1b2 −a2b1 	= 0, system (9) becomes

u̇ = (a1A + b1B)C − (a1b2 − a2b1)DCv v̇ = (a2A + b2B)C + (a1b2 − a2b1)DCu.

Hence, the claim follows. This completes the proof of (b), and consequently we have the
proof of the lemma. �

Lemma 7. Assume that C = 0 and D = 0 are different irreducible invariant algebraic curves
of system (1) of degree m, and that they satisfy conditions (i) and (iii) of theorem 1.

(a) If (Cx, Cy) = 1 and (Dx,Dy) = 1, then system (1) has the normal form

ẋ = ACD − ECyD − FCDy ẏ = BCD + ECxD + FCDx (12)

(b) If C and D satisfy conditions (ii) and (v), then system (1) has the normal form (12) with
a, b � m − c − d and e, f � m − c − d + 1.

Proof. Since (C,D) = 1, the curves C and D have finitely many intersection points. By
assumption (i) at each of such points there is at least one nonzero first derivative of both C and
D. In a similar way to the proof of the claim inside the proof of lemma 6, we can prove that
under an affine change of the variables, system (12) preserves its form and the bound for the
degrees of A, B, E and F. So, we rotate system (1) slightly such that all first derivatives of C
and D are not equal to zero at the intersection points.

From Hilbert’s nullstellensatz, there exist polynomials Mi , Ni and Ri , i = 1, 2 such that

M1C + N1D + R1Dy = 1 M2C + N2D + R2Cy = 1. (13)

By lemma 6 we get that

P = A1C − E1Cy = G1D − F1Dy (14)

for some polynomials A1, E1, G1 and F1. Moreover, using the first equation of (13) we have
F1 = SC + TD + UCy for some polynomials S, T and U. Substituting F1 into (14) we obtain
that

(A1 + SDy)C + (−G1 + TDy)D + (−E1 + UDy)Cy = 0. (15)

Using the second equation of (13) and (15) to eliminate Cy we get

−E1 + UDy = VC + WD (16)

for some polynomials V and W . Substituting (16) into (15), we have

(A1 + SDy + VCy)C = (G1 − TDy − WCy)D.

Since (C,D) = 1, there exists a polynomial K such that

A1 + SDy + VCy = KD G1 − TDy − WCy = KC. (17)

Substituting E1 of (16) and A1 of (17) into (14), then we have

P = KCD − SCDy + WCyD − UCyDy. (18)
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Similarly, we can prove that there exist some polynomials K ′, S′, W ′ and U ′ such that

Q = K ′CD + S′CDx − W ′CxD + U ′CxDx. (19)

Since C is an invariant algebraic curve of (1), we have PCx + QCy = KCC for some
polynomial KC . Using (18) and (19) we get

KCC = C[D(KCx + K ′Cy) − SCxDy + S′CyDx] + CxCy[D(W − W ′) − UDy + U ′Dx].

As C, Cx and Cy are coprime, there exists a polynomial Z such that

D(W − W ′) − UDy + U ′Dx = ZC. (20)

Substituting the expression DW − UDy into (18), we get

P = KCD − SCDy + W ′CyD − U ′CyDx + ZCCy. (21)

Since D = 0 is an invariant algebraic curve of system (1), we have PDx + QDy = KDD

for some polynomial KD . Using (19) and (21) we get

KDD = D[C(KDx + K ′Dy) + W ′(CyDx − CxDy)] + Dx[CDy(−S + S′)
+U ′(CxDy − CyDx) + ZCCy].

As D and Dx are coprime, there exists a polynomial M such that

CDy(−S + S′) + U ′(CxDy − CyDx) + ZCCy = MD. (22)

The curves C and D being transversal implies that C, D and CxDy − CyDx have no common
zeros. From Hilbert’s nullstellensatz, there exist some polynomials M3, N3 and R3 such that

M3C + N3D + R3(CxDy − CyDx) = 1. (23)

Eliminating the term CxDy −CyDx from (22) and (23), we obtain that U ′ = IC + JD for some
polynomials I and J . Hence, equation (22) becomes

C[I (CxDy − CyDx) + Dy(−S + S′) + ZCy] + D[J (CxDy − CyDx) − M] = 0.

Since (C,D) = 1, there exists a polynomial G such that

M = J (CxDy − CyDx) + GC

I (CxDy − CyDx) + Dy(−S + S′) + ZCy = GD.

Substituting ZCy − SDy and U ′ into (21) we obtain that

P = (K + G)CD − (ICx + S′)CDy + (W ′ − JDx)DCy.

This means that P can be expressed in the form (18) with U = 0.
Working in a similar way, we can express Q in the form (19) with U ′ = 0. Thus, (20)

is reduced to D(W − W ′) = ZC. Hence, we have W = W ′ + HC for some polynomial H.
Consequently,Z = HD. Therefore, from (22) we obtain that CDy(−S+S′) = D(M−HCCy).
Since (C,D) = 1 and (D,Dy) = 1, we have S = S′ +LD for some polynomial L. Substituting
W and S into (18) we obtain that P and Q have the form (12). This proves statement (a).

As in the proof of lemma 6 we can prove that under suitable affine change of variables
the form of system (12) and the bound of the degrees of the polynomials A, B, E and F are
invariant. So, without loss of generality we can assume that the highest order terms of C and
D are neither divisible by x nor y.

By the assumptions, the conditions of statement (a) hold, so we get that system (1) has
the form (12). If the bounds of the degrees of A, B, E and F are not satisfied, we have by (12)
that

AaCcDd − EeCc−1
y Dd − FfCcDd−1

y = 0

BbCcDd + EeCc−1
x Dd + FfCcDd−1

x = 0.
(24)
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We remark that if one of the numbers a + c + d , e + c − 1 + d and f + c + d − 1 is less than
the other two, then its corresponding term in the first equation of (24) is equal to zero. The
same remark is applied to the second equation of (24). From the hypotheses it follows that
Cc and Cc−1

y are coprime, and also Dd and Dd−1
y , and Cc and Dd , respectively. Hence, from

these last two equations we obtain that there exist polynomials K and L such that Ee = KCc,
Ff = LDd and

Aa = KCc−1
y + LDd−1

y Bb = −KCc−1
x − LDd−1

x .

We rewrite equation (12) as

ẋ = (A − KCy − LDy)CD − (E − KC)CyD − (F − LD)CDy

ẏ = (B + KCx + LDx)CD + (E − KC)CxD + (F − LD)CDx .

Thus, we reduce the degrees of A, B, E and F in (12) by one. We can continue this process
until the bounds are reached. This completes the proof of statement (b). �

Lemma 8. Let Ci = 0 for i = 1, . . . , p be different irreducible invariant algebraic curves of
system (1) with degCi = ci . Assume that Ci satisfy conditions (i), (iii) and (iv) of theorem 1.
Then

(a) If (Cix , Ciy) = 1 for i = 1, . . . , p, then system (1) has the normal form

ẋ =
(
B −

p∑
i=1

AiCiy

Ci

)
p∏
i=1

Ci ẏ =
(
D +

p∑
i=1

AiCix

Ci

)
p∏

i=1

Ci (25)

where B,D and Ai are suitable polynomials.
(b) If Ci satisfy conditions (ii) and (v) of theorem 1, then system (1) has the normal form (25)

with b, d � m −∑p

i=1 ci and ai � m −∑p

i=1 ci + 1.

Proof. We use induction to prove this lemma. By lemmas 6 and 7 we assume that for any l
with 2 � l < p we have

P =
l∑

i=1

(
Bi − AiCiy

Ci

) l∏
i=1

Ci Q =
l∑

i=1

(
Di +

AiCix

Ci

) l∏
i=1

Ci

where
∑l

i=1 Bi = B and
∑l

i=1 Di = D. Since Cl+1 = 0 is an invariant algebraic curve, from
lemma 6 we get that there exist some polynomials E, G and H such that

P =
l∑

i=1

(
Bi − AiCiy

Ci

) l∏
i=1

Ci = ECl+1 − GCl+1,y

Q =
l∑

i=1

(
Di +

AiCix

Ci

) l∏
i=1

Ci = HCl+1 + GCl+1,x .

(26)

Now we consider the curves

Kj =
l∏

i=1
i 	=j

Ci = 0 j = 1, . . . , l.

From the assumptions we obtain that there are no points at which all the curves Ki = 0 and
Cl+1 = 0 intersect. Otherwise, at least three of the curves Ci = 0 for i = 1, . . . , l + 1 intersect
at some point. Hence, there exist polynomials U and Vi for i = 1, . . . , l such that

UCl+1 +
l∑

i=1

ViKi = 1. (27)
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Using this equality, we can rearrange (26) as

(E − GUCl+1,y)Cl+1 =
l∑

i=1

(BiCi − AiCiy + GV iCl+1,y)Ki

(28)

(H + GUCl+1,x)Cl+1 =
l∑

i=1

(DiCi + AiCix − GV iCl+1,x )Ki.

Using (27) and (28) to eliminate Cl+1 we obtain that

E − GUCl+1,y =
l∑

i=1

IiKi H + GUCl+1,x =
l∑

i=1

JiKi

for some polynomials Ii and Ji . Substituting these last equalities into (28), we have
l∑

i=1

(BiCi − AiCiy + GV iCl+1,y − IiCl+1)Ki = 0

(29)
l∑

i=1

(DiCi + AiCix − GV iCl+1,x − JiCl+1)Ki = 0.

It is easy to check that the expressions multiplying Ki in the two summations of (29) are
divisible by Ci . Hence, there exist polynomials Li and Fi for i = 1, . . . , l such that

BiCi − AiCiy + GV iCl+1,y − IiCl+1 = LiCi

DiCi + AiCix − GV iCl+1,x − JiCl+1 = FiCi.
(30)

So, from (29) we get that
∑l

i=1 Li = 0 and
∑l

i=1 Fi = 0. This implies that (26) can be
rewritten as

P =
l∑

i=1

((Bi − Li)Ci − AiCiy)Ki Q =
l∑

i=1

((Ci − Fi)Ci + AiCix)Ki. (31)

Moreover, we write (30) in the form

(Bi − Li)Ci − AiCiy = IiCl+1 − GV iCl+1,y = Pi

(Di − Fi)Ci + AiCix = JiCl+1 + GV iCl+1,x = Qi.
(32)

It is easy to see that Ci and Cl+1 are invariant algebraic curves of the system ẋ = Pi, ẏ =
Qi . So, from statement (a) of lemma 7 we can obtain that

Pi = (Bi − Li)Ci − AiCiy = XiCiCl+1 − YiCiyCl+1 − NiCiCl+1,y

Qi = (Di − Fi)Ci + AiCix = ZiCiCl+1 + YiCixCl+1 + NiCiCl+1,x .

Substituting these last two equations into (31), we obtain that system (1) has the form (25)
with the l + 1 invariant algebraic curves C1, . . . , Cl+1. From induction we have finished the
proof of statement (a).

The proof of statement (b) is almost identical with those of lemma 7(b), so we shall omit
it here. Hence, this ends the proof of the lemma. �

Proof of theorem. From lemma 8 it follows statement (a) of theorem 1.
By checking the degrees of polynomials Ai , B and D in statement (b) of lemma 8 we

obtain statement (b) of theorem 1.
From statement (a) of lemma 8, we can rearrange system (1) such that it has the form

(25). But from statement (b) of lemma 8 we must have B = 0, D = 0 and Ai = 0. This
proves statement (c) of theorem 1. �
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3. Proof of theorem 2.

The proof is formed by the following examples. First, we consider the case r < m + 1. That
is, the sum of degrees of the given invariant algebraic curves is less than the degree of the
system plus one.

Example 1. The algebraic curve C = y3 + x3 − x2 = 0 satisfies all conditions of theorem 1
excepting (i). The cubic system

ẋ = 2x − 2x3 − 3xy2 + y3 ẏ = 4
3y + x2 − 3x2y − 3y3 (33)

has C as an invariant algebraic curve. We claim that system (33) does not have the form (5).
Otherwise, it can be written in the form

ẋ = A(y3 + x3 − x2) + D(−3y2)

ẏ = B(y3 + x3 − x2) + D(3x2 − 2x)

whereA, B and D are polynomials. It is in contradiction with (33), because in the first equation
of (33) there is a linear term.

Example 2. The algebraic curve C = y − x2 = 0 satisfies all conditions of theorem 1
excepting (ii). The polynomial system of degree m with m � 2:

ẋ = D(y) + xE(y) + A(x, y)(y − x2) ẏ = 2xD(y) + 2yE(y) + B(x, y)(y − x2) (34)

has C as an invariant algebraic curve, where degD, degE = m−1, and degA, degB � m−2.
We can write system (34) in the form (5), i.e.

ẋ = A(x, y)(y − x2) + D(y) + xE(y)

ẏ = (B(x, y) + 2E(y))(y − x2) + 2x(D(y) + xE(y)).

But then deg(B(x, y) + 2E(y)) = m − 1 > m − degC.

Example 3. The algebraic curves C1 = x2 + y2 − 1 = 0 and C2 = y − 1 = 0 satisfy all
conditions of theorem 1 excepting (iii). The cubic system

ẋ = −1 − y + x2 + xy + y2 + x2y + y3 = P ẏ = (y + x2 + y2)(y − 1) = Q (35)

has C1 and C2 as invariant algebraic curves. We claim that system (35) cannot be written in
the form (5). Otherwise, Q can be written as

Q = B(x2 + y2 − 1)(y − 1) + D2x(y − 1)

where B and D are polynomials. However, there do not exist polynomials B and D such that

B(x2 + y2 − 1) + 2xD = y + x2 + y2. (36)

Because if the equality holds, then B must contain the monomial −y. Let ayt be the monomial
of B with the highest degree t � 1 and without the variable x. Then the left-hand side of (36)
contains the monomial ayt+2. It is in contradiction with the right-hand side of (36).

Example 4. The algebraic curves C1 = x = 0, C2 = y = 0 and C3 = x + y = 0 satisfy all
conditions of theorem 1 excepting (iv). The cubic system

ẋ = (1 + x + y + x2 + xy)x = P ẏ = (1 + x2 + 2xy + y2)y = Q (37)
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has these three curves as invariant algebraic curves. We claim that system (37) cannot be
written in the form (5). Otherwise, the polynomial Q can be written as

Q = Bxy(x + y) + Dy(x + y) + Exy

where B, D and E are polynomials. But it is in contradiction with (37).

Example 5. The algebraic curves C1 = xy + 1 = 0 and C2 = y = 0 satisfy all conditions of
theorem 1 excepting (v). The cubic system

ẋ = 1 + x + y − x2 + x3 + 2xy2 = P ẏ = (x + y − x2 + xy − y2)y = Q (38)

has C1 and C2 as invariant algebraic curves. If we write this system in the form (5), then
we have

Q = B(xy + 1)y + Dy2

where B and C are polynomials. Comparing it with (38), we get that B cannot be a constant.
So, degB > 0 = m − r , which is in contradiction with statement (a) of theorem 1.

Next, we consider the case r = m + 1. That is, the sum of the degrees of the given
invariant algebraic curves is equal to the degree of the system plus one.

Example 6. The curve C = x2 + x3 + y3 = 0 satisfies all conditions of theorem 1 excepting
(i). The quadratic systems with C as an invariant algebraic curve can be written as

ẋ = 3
2ax + 3

2ax
2 − by2 ẏ = 2

3bx + ay + bx2 + 3
2axy

where a and b are arbitrary complex numbers. Obviously, if a 	= 0 this system cannot have
the form (6).

Example 7. The curve C = y − x3 = 0 satisfies all conditions of theorem 1 excepting (ii). It
is an invariant algebraic curve of the system

ẋ = 1 + x − x2 + xy ẏ = 3y + 3x2 − 3xy + 3y2.

This system cannot be written in the form (6).

Example 8. The curves C1 = x2 + y2 − 1 = 0 and C2 = y − 1 = 0 satisfy all conditions of
theorem 1 excepting (iii). Moreover, C1 and C2 are invariant algebraic curves of system (7).
However, system (7) does not have the form (6) if a 	= 0.

Example 9. The curves C1 = x + iy = 0, C2 = x − iy = 0 and C3 = x = 0 satisfy all
conditions of theorem 1 excepting (iv). The quadratic system

ẋ = −b(x2 + y2) + x + y(ax + by) ẏ = k(x2 + y2) + y − x(ax + by)

has C1, C2 and C3 as invariant algebraic curves, but this system cannot take the form (6).

Example 10. The curvesC1 = xy−1 = 0 andC2 = x = 0 satisfy all conditions of theorem 1
excepting (v). They are invariant algebraic curves of the system

ẋ = (1 − 2x + y)x ẏ = 1 − y + xy − y2.

Obviously, this system does not have the form (6).
Last we give the counterexamples for the case r > m + 1. That is, the sum of the degrees

of the invariant algebraic curves is larger than the degree of the system plus one.

Example 11. The algebraic curve C = x4 + x3 + y4 = 0 satisfies all conditions of theorem 1
excepting (i). The quadratic systems having C as an invariant algebraic curve are

ẋ = ax + ax2 ẏ = 3
4ay + axy.

So, statement (c) of theorem 1 is not satisfied.
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Example 12. The algebraic curve C = y − x4 = 0 satisfies all conditions of theorem 1
excepting (ii). The quadratic systems having C as an invariant algebraic curve are

ẋ = ax + bx2 + cxy ẏ = 4ay + 4bxy + 4cy2.

They are not zero unless a = b = c = 0.

Example 13. The algebraic curves C1 = x2 + y2 − 1 = 0, C2 = y − 1 = 0 and
C3 = 4x + 3y + 5 = 0 satisfy all conditions of theorem 1 excepting (iii). However, the
quadratic system ẋ = y(2x − y + 1) + x2 + y2 − 1, ẏ = x(y − 1) + 2y2 − 2 has these three
curves as invariant algebraic curves.

Example 14. The algebraic curves C1 = x = 0, C2 = y = 0 and C3 = x + y = 0 satisfy
all conditions of theorem 1 excepting (iv). The linear systems having these three curves as
invariant algebraic curves are ẋ = ax, ẏ = ay. They are not zero unless a = 0.

Example 15. The algebraic curves C1 = xy− 1, C2 = y and C3 = y + 1 satisfy all conditions
of theorem 1 excepting (v). The quadratic system with C1, C2 and C3 as invariant algebraic
curves are

ẋ = a − bx − (a + b)xy ẏ = by(y + 1).

They are not zero unless a = b = 0.
From these 15 examples follows the proof of theorem 2. �

4. Proof of theorem 3.

The proof is separated into three parts. The first part shows that there exists a set 91 of values
of the parameters a and b such that system (7) has only the given two invariant algebraic
curves. The second part give a proof that there exists a set 92 of values of a and b such that
systems (7) have no exponential factors. Moreover,91 ∩92 	= ∅. The last step contributes to
prove that system (7) is not Darboux integrable for a, b ∈ 91 ∩ 92.

We need the following result (for a proof, see [10]).

Lemma 9. Assume that system (1) with degree m has an invariant algebraic curve C of degree
n. Let Cn, Pm and Qm be the homogeneous parts of C with degree n, P and Q with degree m.
Then the irreducible factor of Cn divides yPm − xQm.

The first part is formed by the following proposition, which is related to the existence of
invariant algebraic curves of system (7).

Proposition 10. For each b 	= 1 ± 1
p with p ∈ N there exists a numerable set ϒ such that if

a ∈ R\(ϒ ∪ {0}), then system (7) has no irreducible invariant algebraic curves different from
f1 = 0 and f2 = 0.

Proof. Assume that C = ∑n
i=0 Ci(x, y) = 0 is an invariant algebraic curve of system (7) with

cofactor K = K1 +K0, where Ci and Ki are homogeneous polynomials of degree i. From the
definition of the invariant algebraic curve, i.e. (2), we have

[x2 + axy + (1 − b)y2 + by − 1]
n∑

i=1

Cix + [bxy + ay2 − bx − a]
n∑

i=1

Ciy = (K1 + K0)

n∑
i=0

Ci.
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Equating the terms with the same degree we obtain

L[Cn−i] = K1Cn−i + K0Cn−i+1 − byCn−i+1,x + bxCn−i+1,y + Cn−i+2,x + aCn−i+2,y

i = 0, 1, . . . , n + 2 (39)

where Ci = 0 for i < 0 and i > n, and L is the partial differential operator

L = [x2 + axy + (1 − b)y2]
∂

∂x
+ [bxy + ay2]

∂

∂y
.

For system (7) we have yP2 − xQ2 = (1 − b)y(x2 + y2). So, from lemma 9 we can
assume that

Cn = (x2 + y2)lym n = 2l + m.

Substituting Cn into (39) with i = 0 and doing some computations we get

K1 = (2l + mb)x + a(2l + m)y.

Set Cn−1 = ∑n−1
i=0 cn−1−ix

n−1−iyi . Substituting Cn−1, Cn and K1 into (39) with i = 1
and doing some calculations, we obtain

n−1∑
i=0

(m − 1 − i + ib − mb)cn−1−ix
2l+m−iyi −

n−1∑
i=0

acn−1−ix
2l+m−1−iyi+1

+
n−1∑
i=0

(2l + m − 1 − i)(1 − b)cn−1−ix
2l+m−2−iyi+2

= K0(x
2 + y2)lym + mbx(x2 + y2)lym−1

=
l∑

i=0

K0

(
l

i

)
x2l−2iym+2i +

l∑
i=0

mb

(
l

i

)
x2l+1−2iym+2i−1.

This equation can be written as
n∑

i=0

[(m − 1 − i + ib − mb)cn−1−i − acn−i + (2l + m + 1 − i)(1 − b)cn+1−i]x2l+m−iyi

=
l∑

i=0

K0

(
l

i

)
x2l−2iym+2i +

l∑
i=0

mb

(
l

i

)
x2l+1−2iym+2i−1

where ci = 0 for i < 0 and i > n− 1. Equating the coefficients of xiyj in the above equation,
we get

[m− i − 1 + (i − m)b]c2l+m−1−i − ac2l+m−i + (2l + m + 1 − i)(1 − b)c2l+m+1−i = 0
(40)

i = 0, 1, . . . ,m − 2

[(2i − 1)b − 2i]c2l−2i − ac2l+1−2i − (2l + 2 − 2i)(b − 1)c2l+2−2i = mb

(
l

i

)
(41)

i = 0, 1, . . . , l

[2i(b − 1) − 1]c2l−2i−1 − ac2l−2i − (2l + 1 − 2i)(b − 1)c2l+1−2i = K0

(
l

i

)
(42)

i = 0, 1, . . . , l.
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From the assumptions and (40) we can prove easily that c2l+j = 0 for j = 1, . . . ,m − 1.
Equations (41) and (42) can be written as

c2l−2i = 1
2i(b − 1) − b

[
ac2l+1−2i + (2l + 2 − 2i)(b − 1)c2l+2−2i + mb

(
l

i

)]

c2l−2i−1 = 1

2i(b − 1) − 1

[
ac2l−2i + (2l + 1 − 2i)(b − 1)c2l+1−2i + K0

(
l

i

)] (43)

with i = 0, 1, . . . , l. It is easy to check that

c2l = −m c2l−1 = am − K0.

From (43) with i = 1 we get that

c2l−2 = a

b − 2
(am − K0) − ml = B1(a, b, l)(am− K0) − m

(
l

1

)

c2l−3 =
[

a2

(2b − 3)(b − 2)
+ l − b − 1

2b − 3

]
(am− K0) = B2(a, b, l)(am− K0).

In what follows we use induction to find the coefficients c2l−i for i = 4, . . . , 2l. Assume that
for i = h we have

c2l−2h = B2h−1(a, b, l)(am− K0) − m

(
l

h

)
c2l−1−2h = B2h(a, b, l)(am− K0)

where Bj−1(a, b, l) for j = 2h, 2h + 1, are polynomials in a where coefficients are functions
of b and l and the highest order terms of the form

aj−1

/
j∏

i=2

[(i − 1)b − i]. (44)

Then from (43) with i = h + 1 we get

c2l−2h−2 = 1

2(h + 1)(b − 1) − b

{
aB2h(a, b, l)(am− K0) + (2l − 2h)(b − 1)

×
[
B2h−1(a, b, l)(am− K0) − m

(
l

h

)]
+ mb

(
l

h + 1

)}

= B2h+1(a, b, l)(am− K0) − m

(
l

h + 1

)

c2l−2h−3 = 1

2(h + 1)(b − 1) − 1

{
a

[
B2h+1(a, b, l)(am− K0) − m

(
l

h + 1

)]

+ (2l − 2h − 1)(b − 1)B2h(a, b, l)(am− K0) + K0

(
l

h + 1

)}
= B2h+2(a, b, l)(am− K0).

where

B2h+1 = 1

2(h + 1)(b − 1) − b
[aB2h + (2l − 2h)(b − 1)B2h−1]

B2h+2 = 1

2(h + 1)(b − 1) − 1

[
aB2h+1 −

(
l

h + 1

)
+ (2l − 2h − 1)(b − 1)B2h

]
are polynomials in a of degree 2h+ 1 and 2h+ 2 respectively, in which the highest order terms
are the form (44) for j = 2h + 2 and j = 2h + 3, respectively. Hence, from (43) and using
induction we obtain that for h = 0, 1, . . . , 2l

c2l−h = Bh−1(a, b, l)(am− K0) +
(−1)h+1 − 1

2
m

(
l

h/2

)
.
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Moreover, from the first equation of (43) with i = l, i.e. ac0 + (b − 1)c1 + K0 = 0 we get

a[B2l−1(am− K0) − m] + (b − 1)B2l−2(am− K0) = K0.

This means that

[aB2l−1 + (b − 1)B2l−2 − 1](am− K0) = 0.

Since aB2l−1 + (b − 1)B2l−2 − 1 is a polynomial of degree 2l in the variable a, it has at most
2l real roots, denoted by Sl the set of the roots. Then, for a ∈ R\Sl we must have K0 = am.

Obviously, ϒ = ∪∞
l=1Sl is a numerable set. Moreover, for each a ∈ R\ϒ and l ∈ N we

have K0 = am. So, if C is an invariant algebraic curve of the above form, it has the cofactor
K = K1 + K0 = (2l + mb)x + a(2l + m)y + am = 2(x + ay)l + (bx + ay + a)m.

Moreover, we can check that C∗ = (x2 + y2 − 1)l(y − 1)m = 0 is an invariant algebraic
curve with cofactor K. If D = C − C∗ 	= 0, then D = 0 is also an invariant algebraic
curve with the cofactor K. But D has degree d � 2l + m − 2. Again using lemma 9 we can
assume that the highest order homogeneous term of D is of the form Dd = (x2 + y2)l

′
ym′

with d = 2l′ + m′. Then, from the above proof we should have the linear part of K is
K1 = (2l′ + m′b)x + a(2l′ + m′)y. It is in contradiction with the last paragraph. Hence, we
must have C = C∗. This proves that for b 	= 1 ± 1

p
with p ∈ N and a ∈ R\(ϒ ∪ {0}) system

(7) has only the irreducible invariant algebraic curves x2 + y2 = 1 and y = 1. This proves the
proposition. �

Now we consider the exponential factors. We recall that if F = exp(G/H) is an
exponential factor of system (1) with cofactor L, then H = 0 is an invariant algebraic curve
of system (1) with a cofactor KH , and G satisfies the following equation:

PGx + QGy = KHG + LH. (45)

For more details see [13].

Proposition 11. For each b 	∈ Q there exists a numerable set ϒ∗ ⊃ ϒ such that if
a ∈ R\(ϒ∗ ∪ {0}), then system (7) has no exponential factors.

Proof. From proposition 10 system (7) has only the invariant algebraic curves C1 =
x2 + y2 − 1 = 0 and C2 = y − 1 = 0. If system (7) has an exponential factor, we
can assume that it has the form F = exp

(
G

C
l1
1 C

l2
2

)
with a cofactor L, where l1 and l2 are

non-negative integers. Since the invariant algebraic curve C
l1
1 C

l2
2 = 0 has the cofactor

K = l1K1 + l2K2 = 2l1(x + ay) + l2(bx + ay + a), from (45) we get that G satisfies the
following equation:

[x2 + axy + (1 − b)y2 + by − 1]Gx + (bxy + ay2 − bx − a)Gy

= [2l1(x + ay) + l2(bx + ay + a)]G + L(x2 + y2 − 1)l1(y − 1)l2 . (46)

Set degG = n. Since degL � 1, we can assume that L = L1 + L0, where Li are
homogeneous polynomials of degree i.

Case 1: n + 1 < 2l1 + l2. By equating the homogeneous terms of highest degree in (46) we
obtain first that L1 = 0, and after that L0 = 0, and so L = 0. Thus G is an invariant algebraic
curve. Moreover, from the assumption of this proposition we obtain that G = cC

l1
1 C

l2
2 , where

c is a constant. Then, F = constant, and it cannot be an exponential factor.

Case 2: n+1 = 2l1 +l2. Then we haveL1 = 0. SetG = ∑n
i=0 Gi(x, y)withGi homogeneous

polynomials of degree i and Gn = ∑n
i=0 aix

n−iyi , where ai are constants. Then, equating the
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terms of (46) with degree n + 1 we get that

[x2 + axy + (1 − b)y2]
n∑

i=0

(n − i)aix
n−i−1yi + (bxy + ay2)

n∑
i=0

iaix
n−iyi−1

= [2l1(x + ay) + l2(bx + ay)]
n∑

i=0

aix
n−iyi + L0(x

2 + y2)l1yl2 .

Using the relation n + 1 = 2l1 + l2 we can write this last equation as
2l1+l2+1∑
i=0

{[(b − 1)(i − l2) − 1]ai + aai−1 + (1 − b)(2l1 + l2 + 1 − i)ai−2}x2l1+l2−iyi

= L0

l1∑
i=0

(
l1

i

)
x2l1−2iy2i+l2

where ai = 0 for i < 0 and i > n. The last equation is equivalent to

[(b − 1)(i − l2) − 1]ai + aai−1 + (1 − b)(2l1 + l2 + 1 − i)ai−2 = 0
(47)

i = 0, 1, . . . , l2 − 1
2l1+1∑
j=0

{
[(b − 1)j − 1]aj+l2 + aaj+l2−1 − (1 − b)(2l1 + 1 − j)aj+l2−2

}
x2l1−j yj+l2

= L0

l1∑
i=0

(
l1

i

)
x2l1−2iy2i+l2 . (48)

Since b 	= 1 ± 1
k

for k ∈ N, from (47) we get that ai = 0 for i = 0, 1, . . . , l2 − 1. From (48)
we obtain that for i = 0, 1, . . . , l1
[(b − 1)(2i + 1) − 1] a2i+1+l2 + aa2i+l2 − (1 − b)(2l1 − 2i)a2i+l2−1 = 0

[(b − 1)2i − 1] a2i+l2 + aa2i+l2−1 − (1 − b)(2l1 + 1 − 2i)a2i+l2−2 = L0

(
l1

i

)
.

(49)

Solving (49) for i = 0, 1, . . . , l1 − 1 and its second equation with i = l1 we get that

al2+h = B̄h(a)L0 k = 0, 1, . . . , 2l1
where B̄h(a) is a polynomial of degree h in a whose coefficients are rational functions in b and
l1. The highest order term of B̄h(a) in a is −1/

∏h
j=0[(1 − b)j + 1]. So the first equation of

(49) with i = l1 is aB̄2l1L0 = 0. Since the coefficient of L0 is a polynomial of degree m + 1,
there exist at most m + 1 values of a such that it is equal to zero. We denote by γ̄l1 the set of
such a. Hence, if a 	∈ γ̄l1 we must have L0 = 0. This means that L = 0. So, system (7) has
no exponential factors for a 	∈ γ̄l1 .

Case 3: n = 2l1 + l2. Let L1 = L10x + L01y. Using the notations for G and Gn introduced in
the study of case 2, equating the terms of (46) with degree n+ 1 and doing some computations
we get that
n+2∑
i=0

[(b − 1)(i − l2)]ai + (1 − b)(n + 2 − i)ai−2]xn+1−iyi

= L10

l1∑
i=0

(
l1

i

)
x2l1−2i+1y2i+l2 + L01

l1∑
i=0

(
l1

i

)
x2l1−2iy2i+l2+1
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where ai = 0 for i < 0 and i > n. These equations are equivalent to

(i − l2)ai − (n + 2 − i)ai−2 = 0, i = 0, 1, . . . , l2 − 1

(b − 1)2ja2j+l2 + (1 − b)(2l1 + 2 − 2j)a2j+l2−2 = L10

(
l1

j

)
(50)

(b − 1)(2j + 1)a2j+l2+1 + (1 − b)(2l1 + 1 − 2j)a2j+l2−1 = L01

(
l1

j

)

where j = 0, 1, . . . , l1.
From the first equation of (50) we obtain that ai = 0 for i = 0, 1, . . . , l2 − 1. Hence, the

first equation of (50) with j = 0 induces to L10 = 0. Thus, we have

a2j+l2 = 2l1 + 2 − 2j

2j
a2j+l2−2 j = 1, . . . , l1.

i.e. al2+2j = (
l1
j

)
al2 , j = 1, · · · l1. From the second equation of (50) with j = 0, 1, . . . , l1 − 1

and using induction, we can prove that

a2j+1+l2 = µj

b − 1
L01 j = 0, 1, . . . , l1 − 1

with µj > 0. Now the second equation of (50) with j = l1 can be written as (1 +µl1)L01 = 0.
This implies that L01 = 0. Moreover, we have a2j+1+l2 = 0 for j = 0, 1, . . . , l1 − 1.

From the above calculations we get that L = L0 and

Gn =
n∑

i=0

aix
n−iyi = al2(x

2 + y2)l1yl2 .

Since al2 	= 0, without loss of generality we assume that al2 = 1.
Equating the terms of (46) with degree n we get that

[x2 + axy + (1 − b)y2]Gn−1,x + (bxy + ay2)Gn−1,y = [2l1(x + ay) + l2(bx + ay)]Gn−1

− byGnx + bxGny + l2aGn + L0(x
2 + y2)l1yl2 .

Let Gn−1 = ∑n−1
i=0 bix

n−1−iyi . Substituting Gn−1 into the above equation and doing some
computations, we can obtain that

n∑
i=0

{[l2 − 1 − i + b(i − l2)]bi − abi−1 + (1 − b)(n + 1 − i)bi−2}xn−iyi

= bl2

l1∑
i=0

(
l1

i

)
x2l1+1−2iyl2+2i−1 + (l2a + L0)

l1∑
i=0

(
l1

i

)
x2l1−2iyl2+2i

where bi = 0 for i < 0 and i > n − 1. From this equation we obtain that

[l2 − 1 − j + b(j − l2)]bj − abj−1 + (1 − b)(n + 1 − j)bj−2 = 0

j = 0, 1, . . . , l2 − 2

[−2i + b(2i − 1)]b2i+l2−1 − ab2i+l2−2 + (1 − b)(2l1 + 2 − 2i)b2i+l2−3 = bl2

(
l1

i

)
(51)

[−2i − 1 + 2bi]b2i+l2 − ab2i+l2−1 + (1 − b)(2l1 + 1 − 2i)b2i+l2−2 = (l2a + L0)

(
l1

i

)

with i = 0, 1, . . . , l1.
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From the first equation of (51) we can prove that bj = 0 for j = 0, 1, . . . , l2 − 2. From
(51) with i = 0, 1, . . . , l1 − 1 and its first equation with i = l1, working in a similar way to
the proof of proposition 10 we can prove that

bl2+2i−1 = B̃2i−1(a)L0 − l2

(
l1

i

)
bl2+2i = B̃2i (a)L0 i = 0, 1, . . . , l1

where B̃k(a) is a polynomial of degree k in a whose coefficients are rational functions in b and
l1. Using the last equation of (51) with i = l1 we get[

aB̃2l1−1 + (b − 1)B̃2l1−2 + 1
]
L0 = 0.

For every given b and l1 there exist at most 2l1 values of a for which aB̃2l1−1 + (b−1)B̃2l1−2 + 1
is equal to zero. We denote by γ̃l1 the set of such a. Then if a 	∈ γ̃l1 , we have L0 = 0. So for
every b satisfying the assumption of the proposition, if a 	∈ ∪γ̃l1 system (7) has no exponential
factors.

Case 4: n > 2l1 + l2. Using the notations of case 2 for G and Gn, from (46) we get that

[x2 + axy + (1 − b)y2]Gnx + (bxy + ay2)Gny = [2l1(x + ay) + l2(bx + ay)]Gn.

Working in a similar way to the previous case we can prove that the coefficients ai in Gn

satisfy the following equations:

[n − i − 2l1 + b(i − l2)]ai + a(n − 2l1 − l2)ai−1 + (1 − b)(n + 2 − i)ai−2 = 0

with i = 0, 1, . . . , n + 1. Since b 	∈ Q, from these equations we obtain that ai = 0. So,
Gn = 0. This implies that system (7) has no exponential factors.

Summing up these four cases the proof of the proposition follows. �

In this last step we prove that for each b 	∈ Q, if a ∈ R\(ϒ∗ ∪ {0}) system (7) is not
Darboux integrable.

Suppose that the assumptions of proposition 11 are satisfied. Then, by propositions 10
and 11 we get that system (7) has only the invariant algebraic curves x2 + y2 = 1 with
cofactor K1 = 2(x + ay) and y = 1 with cofactor K2 = bx + ay + a, and has no exponential
factors. It is easy to check that under these assumptions do not exist λ1, λ2 ∈ C not all zero
such that λ1K1 + λ2K2 = 0 or λ1K1 + λ2K2 = −div(P,Q) = −(2 + b)x − 3ay, where
P = y(ax − by + b)+ x2 + y2 − 1 and Q = bx(y − 1)+ a(y2 − 1). Hence, from the Darboux
theory of integrability (see, for instance, [9] or [13]) it follows that system (7) is not Darboux
integrable. We have finished the proof of theorem 3.

5. Proof of corollary 4.

Since y = 1 is invariant by system (8), after the change of variables

x̄ = x

y − 1
ȳ = y

y − 1
t = τ

y − 1

system (8) becomes the form of system (7), i.e.

dx̄

dτ
= ȳ(ax̄ − bȳ + b) + x̄2 + ȳ2 − 1 = P̄ (x, y)

(52)
dȳ

dτ
= bx̄(ȳ − 1) + a(ȳ2 − 1) = Q̄(x, y).

Let C(x, y) be a polynomial of degree n, and set C̄(x̄, ȳ) = (ȳ − 1)nC
(

x̄
ȳ−1 ,

ȳ

ȳ−1

)
. We

claim that if C(x, y) = 0 is an invariant algebraic curve of system (8) with cofactor K(x, y)
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and C̄ 	≡ constant, then C̄(x̄, ȳ) = 0 is an invariant algebraic curve of system (52) with
cofactor

K̄ = (ȳ − 1)K

(
x̄

ȳ − 1
,

ȳ

ȳ − 1

)
+ n

Q̄

ȳ − 1
.

Indeed, straightforward calculations show that

P̄ C̄x̄ + Q̄C̄ȳ = (ȳ − 1)n
[
P̄ (ȳ − 1) − Q̄x̄

(ȳ − 1)2
Cx − Q̄

(ȳ − 1)2
Cy + n

Q̄

ȳ − 1
C

]

= (ȳ − 1)n
[
(ȳ − 1)PCx + (ȳ − 1)QCy + n

Q̄

ȳ − 1
C

]

= (ȳ − 1)n+1KC + n(ȳ − 1)n
Q̄

ȳ − 1
C = K̄C̄.

This proves the claim.
Now we claim that if F(x, y) = exp

(
G(x,y)

H(x,y)

)
is an exponential factor of system (8) with

cofactor L(x, y), then

F̄ (x̄, ȳ) = exp

(
G

(
x̄

ȳ − 1
,

ȳ

ȳ − 1

)/
H

(
x̄

ȳ − 1
,

ȳ

ȳ − 1

))

is an exponential factor of system (52) with cofactor L̄(x̄, ȳ) = (ȳ − 1)L
(

x̄
ȳ−1 ,

ȳ

ȳ−1

)
. In fact,

we have

P̄F̄x̄ + Q̄F̄ȳ = exp

(
G

H

)
H−2

[(
P̄ (ȳ − 1) − Q̄x̄

(ȳ − 1)2
Gx − Q̄

(ȳ − 1)2
Gy

)
H

−
(
P̄ (ȳ − 1) − Q̄x̄

(ȳ − 1)2
Hx − Q̄

(ȳ − 1)2
Hy

)
G

]

= (ȳ − 1) exp

(
G

H

)
H−2[(PGx + QGy)H − (PHx + QHy)G]

= (ȳ − 1)(PFx + QFy)

= (ȳ − 1)LF = (ȳ − 1)L

(
x̄

ȳ − 1
,

ȳ

ȳ − 1

)
F̄ .

This proves the claim.
From these two claims and the proof of theorem 3 we obtain that there exist values of a

and b for which systems (8) and (7) have only two irreducible invariant algebraic curves and
no exponential factors. Hence, for such values of a 	= 0 and b system (8) is not Darboux
integrable. Otherwise, system (7) would have a Darboux integral, in contradiction with
theorem 3. Hence, the proof of corollary 4 is complete.
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Rendiconti del Circolo Matematico di Palermo 5 161–91
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